1、CIFAR-10
首先找到CIFAR-10的网站:
https://www.cs.toronto.edu/~kriz/cifar.html
官网第一页写着CIFAR-10的来源:
The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
80 million tiny images dataset:
http://groups.csail.mit.edu/vision/TinyImages/
作者介绍CIFAR-10本质是从一个叫做【the 80 million tiny images dataset】(“8000万张小图”数据集)中精炼剥离出来的一部分,是该数据集的子集。
本文介绍了几个深度学习中常用的数据集,包括CIFAR-10、CIFAR-100、MNIST、SVHN、ImageNet和LSUN。CIFAR-10和CIFAR-100分别包含10和100个类别的彩色图像,源自80 million tiny images dataset,但后者已被下架。MNIST是手写数字识别数据集,而SVHN源自谷歌街景数字。ImageNet是一个大规模的图像识别数据集,包含1000个类别,常用于ILSVRC竞赛。LSUN则是一个用于场景和对象识别的大型数据集,包含10个场景和20个对象类别,其标注更丰富。
订阅专栏 解锁全文
2236

被折叠的 条评论
为什么被折叠?



