SPSSPRO模型归纳整理

这篇博客涵盖了统计建模的关键概念,包括岭回归、单位根检验和偏自相关分析,以及分层回归和调节作用。在量化分析部分,介绍了秩和比综合评价法和数据包络分析。接着,文章深入讨论了机器学习分类和回归,并列举了多种方差分析方法,如单因素、双因素、三因素及多因素方差分析,同时强调了事后多重比较的重要性。此外,还涉及了描述性统计、正态分布和相关性分析等基础数据分析技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、统计建模

1.岭回归

2.单位根检验

3. 偏(自相关分析)(acf/pacf)

4.分层回归

5. 调节作用

二、量化分析

1.秩和比综合评价法

2.数据包络分析

三、机器学习分类

四、机器学习回归

五、参数检验

1.单因素方差分析

2.双因素方差分析

3.三因素方差分析

4.多因素方差分析

5.事后多重比较(接方差分析)

六、数据分析

1.描述性统计

2.正态分布

3.相关性分析


一、统计建模

1.岭回归

2.单位根检验

3. 偏(自相关分析)(acf/pacf)

4.分层回归

5. 调节作用

二、量化分析

1.秩和比综合评价法

2.数据包络分析

以下为司守奎老师里用lingo求解的:

 

三、机器学习分类

四、机器学习回归

 同分类

五、参数检验

1.单因素方差分析(方差分析也可去看B站杏花开医学统计的视频教程)

司守奎老师里的单因素方差分析如下(均衡数据与不均衡数据):

 

当出现显著差异时就要进行多重比较,如下图:

2.双因素方差分析

 

 

3.三因素方差分析

4.多因素方差分析

5.事后多重比较(接方差分析)

六、数据分析

1.描述性统计

2.正态分布

3.相关性分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值