实验二:群智能算法,第3关:粒子群算法 - 目标函数最优解计算

本文介绍了如何使用Python实现粒子群算法,重点讲解了编码与适应度函数、粒子群算法原理和流程。任务是通过粒子群算法在[-10,10]区间找到目标函数的最小值。编程要求包括初始化粒子群位置和速度,计算适应度,更新位置,直至找到最优解。" 133353323,20014461,Python实现机器人项目:语音识别与物体检测的关键字判断,"['人工智能', '语音识别', '计算机视觉', '深度学习', 'Python开发']
摘要由CSDN通过智能技术生成

任务描述

本关任务:使用 python 实现粒子群算法,并求解目标函数最优解。

相关知识

为了完成本关任务,你需要掌握:1.编码与适应度函数,2.粒子群算法原理,3.粒子群算法流程,4.使用 python 实现粒子群算法。

编码与适应度函数

在粒子群算法中也需要进行编码,不过相对于遗传算法粒子群算法编码非常简单。例如,函数:

在这里插入图片描述
可直接将函数解(x1​,x2​)作为编码。而函数的值f(x1​,x2​)即可作为适应度,若求解函数最小值则适应度越小越好,若求解函数最大值则适应度越大越好。

粒子群算法原理

粒子群函数是根据鸟群寻找食物实现的优化算法,每一只鸟被称为粒子,即函数的一个解。我们已经知道,每一只鸟寻找食物是根据离食物最近的鸟的位置,与自己曾经离食物最近的位置来决定改变自己现在的位置。根据这个原理,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

就你叫Martin?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值