CV注意力机制
文章平均质量分 65
小杜今天学AI了吗
努力日更的小蜜蜂博主,喜欢健身,喜欢学习
展开
-
论文及其创新点学习 iccv 2019 GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond
在本文中,我们利用这一发现创建了一个基于查询无关公式的简化网络,该网络保持了NLNet的准确性,但计算量显著减少。我们进一步观察到,这种简化设计与挤压激励网络( SENet )具有相似的结构。因此,我们将它们统一到一个三步的全局上下文建模的通用框架中。,它是轻量级的,可以有效地对全局上下文进行建模。轻量级特性使我们可以将其应用于骨干网络中的多个层,以构建一个全局上下文网络( GCNet ),该网络在各种识别任务的主要基准测试中通常优于简化的NLNet和SENet。然而,通过严格的实证分析,我们发现。原创 2024-10-13 11:30:51 · 351 阅读 · 0 评论 -
论文及其创新点学习cvpr2022 On the Integration of Self-Attention and Convolution
论文创新点,将注意力机制 和卷积 相结合。原创 2024-10-13 10:28:46 · 729 阅读 · 0 评论 -
论文研读 An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale
Vision Transformer(ViT)是一种将Transformer架构直接应用于图像分类任务的模型。它源于自然语言处理(NLP)领域中的Transformer模型,该模型以其自注意力机制而闻名,能够捕捉序列中的长距离依赖关系原创 2024-05-11 21:02:05 · 479 阅读 · 0 评论 -
论文分享[cvpr2018]Non-local Neural Networks非局部神经网络
将非局部操作作为通用构建块家族,用于捕获长距离依赖关系。受计算机视觉中经典的非局部均值方法的启发,我们的非局部操作将位置响应的计算为所有位置的特征的加权和。这个构建块可以插入到许多计算机视觉架构中。在视频分类任务中,即使没有任何花里胡哨(without any bells and whistles),我们的非局部模型也可以在 Kinetics 和 Charades 数据集上竞争或优于当前的竞赛获胜者。原创 2024-05-08 21:41:08 · 1042 阅读 · 0 评论