棋盘覆盖问题--分治策略

问题描述:
在一个2k×2k (k≥0,k为上标)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。棋盘覆盖问题要求用图(b)所示的4种不同形状的L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
在这里插入图片描述
分治策略:
分治法求解棋盘覆盖问题的技巧在于划分棋盘,使划分后的子棋盘的大小相同,并且每个子棋盘均包含一个特殊方格,从而将原问题分解为规模较小的棋盘覆盖问题。
k>0时,可将2k×2k的棋盘划分为4个2(k-1)×2(k-1)的子棋盘,这样划分后,由于原棋盘只有一个特殊方格,所以,这4个子棋盘中只有一个子棋盘包含该特殊方格,其余3个子棋盘中没有特殊方格。为了将这3个没有特殊方格的子棋盘转化为特殊棋盘,以便采用递归方法求解,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种划分策略,直至将棋盘分割为1×1的子棋盘。
在这里插入图片描述
下面讨论棋盘覆盖问题中数据结构的设计。
(1)棋盘:可以用一个二维数组board[size][size]表示一个棋盘,其中,size=2k。为了在递归处理的过程中使用同一个棋盘,将数组board设为全局变量;
(2)子棋盘:整个棋盘用二维数组board[size][size]表示,其中的子棋盘由棋盘左上角的下标tr、tc和棋盘大小s表示;
(3)特殊方格:用board[dr][dc]表示特殊方格,dr和dc是该特殊方格在二维数组board中的下标;
(4) L型骨牌:一个2k×2k的棋盘中有一个特殊方格,所以,用到L型骨牌的个数为(4k-1)/3,将所有L型骨牌从1开始连续编号,用一个全局变量t表示。

void  ChessBoard(int tr, int tc, int dr, int dc, int size)
// tr和tc是棋盘左上角的下标,dr和dc是特殊方格的下标,
// size是棋盘的大小,t已初始化为0
{
      if (size = = 1) return;  //棋盘只有一个方格且是特殊方格
      t++;  // L型骨牌号
      s = size/2;  // 划分棋盘
      // 覆盖左上角子棋盘
      if (dr < tr + s && dc < tc + s)   // 特殊方格在左上角子棋盘中
         ChessBoard(tr, tc, dr, dc, s);          //递归处理子棋盘
      else{      // 用 t 号L型骨牌覆盖右下角,再递归处理子棋盘
        board[tr + s - 1][tc + s - 1] = t;
        ChessBoard(tr, tc, tr+s-1, tc+s-1, s);
      }
 // 覆盖右上角子棋盘
      if (dr < tr + s && dc >= tc + s)    // 特殊方格在右上角子棋盘中
         ChessBoard(tr, tc+s, dr, dc, s);          //递归处理子棋盘
      else {        // 用 t 号L型骨牌覆盖左下角,再递归处理子棋盘
         board[tr + s - 1][tc + s] = t;
         ChessBoard(tr, tc+s, tr+s-1, tc+s, s); }
      // 覆盖左下角子棋盘
      if (dr >= tr + s && dc < tc + s)   // 特殊方格在左下角子棋盘中
         ChessBoard(tr+s, tc, dr, dc, s);         //递归处理子棋盘
      else {       // 用 t 号L型骨牌覆盖右上角,再递归处理子棋盘
         board[tr + s][tc + s - 1] = t;
         ChessBoard(tr+s, tc, tr+s, tc+s-1, s); }
      // 覆盖右下角子棋盘
      if (dr >= tr + s && dc >= tc + s)  // 特殊方格在右下角子棋盘中
         ChessBoard(tr+s, tc+s, dr, dc, s);       //递归处理子棋盘
      else {       // 用 t 号L型骨牌覆盖左上角,再递归处理子棋盘
         board[tr + s][tc + s] = t;
         ChessBoard(tr+s, tc+s, tr+s, tc+s, s); }
 }

设T(k)是覆盖一个2k×2k棋盘所需时间,从算法的划分策略可知,T(k)满足如下递推式:
在这里插入图片描述
解此递推式可得T(k)=O(4k)。由于覆盖一个2k×2k棋盘所需的骨牌个数为(4k-1)/3,所以,该算法是一个在渐进意义下的最优算法。

PS:k均为上标

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值