笔记
文章平均质量分 93
HXH@
这个作者很懒,什么都没留下…
展开
-
论文解读《Learning spatiotemporal embedding with gated convolutional recurrent networks for translation 》
从基因组序列中准确预测翻译起始位点(TIS)对于理解基因调控和功能至关重要。TIS预测方法的特征向量没有足够的鉴别性,从而导致不令人满意的预测结果。在本研究中,我们设计了一种具有残差学习功能的高效门控卷积递归网络(GCR-Net),以一种有效的融合策略动态提取原始基因组序列的依赖模式,并成功地提高了TIS预测的性能。GCR-Net主要包括指数门控卷积剩余网络(EGCRN)和双向门控递归单元(Bi-GRU)网络。原创 2023-03-01 20:29:04 · 612 阅读 · 0 评论 -
论文解读《THRONE: a new approach for accurate prediction of human RNA N7-methylguanosine sites》
N7甲基鸟苷(m7G)是真核mRNA的5′帽处必不可少的,无处不在的和带正电荷的修饰,调节其输出,翻译和剪接过程。虽然已经开发了几种基于机器学习(ML)的m7G计算预测器,但都利用了特定的计算框架。这项研究是我们探索四种不同的计算框架并确定最佳方法的第一个实例。基于此,我们开发了一种新的预测因子,THRONE(一种用于识别humanRNAN7-methylguanosinesites的three层集合预测器),以准确识别人类基因组中的m7G位点。三步集成学习如下。http这三层涉及以下步骤。...原创 2022-07-29 23:22:55 · 314 阅读 · 0 评论 -
论文解读《StackTADB:一种基于堆叠的集成学习模型,用于准确预测果蝇中的 topologically associating domains(TADs)的范围》
摘要染色体由许多不同的染色质结构域组成,可称为拓扑结构域或拓扑关联结构域(TADs)。这些结构域在不同细胞类型之间是稳定的,在物种间高度保守,因此这些染色质结构域被认为是染色体折叠的基本单位,被认为是染色体组织中重要的二级结构。然而,由于高碳数据或实验的高成本和低分辨率,TAD边界的识别仍然是一个巨大的挑战。在本研究中,我们提出了一个新的集成学习框架,称为StackTADB,用于预测TADs的范围。StackTADB集成了四种基本分类器,包括随机森林、逻辑回归、k-邻接和支持向量机。通过对前期研究数据集的原创 2022-04-11 15:42:45 · 1592 阅读 · 0 评论 -
论文解读《通过迭代特征表示计算预测物种特异性酵母DNA复制起源》
论文解读《通过迭代特征表示计算预测物种特异性酵母DNA复制起源》原创 2022-03-15 17:50:16 · 958 阅读 · 0 评论 -
论文解读《TS-m6A-DL:使用通用深度学习模型对n6-甲基腺苷位点进行组织特异性识别》
摘要最常见的转录后修饰,n6-甲基腺苷(m6a),与许多关键的生物过程有关。精确检测基因组周围的m6a位点对于揭示其调控功能和为药物设计提供新的见解至关重要。虽然已经引入了检测m6a位点的实验和计算模型,但这些传统的方法是费力和昂贵的。此外,这些模型中只有少数模型能够检测到各种组织中的m6a位点。因此,需要一种更通用和优化的计算方法来检测不同组织中的m6a位点。在本文中,我们提出了一种基于深度神经网络(DNN)的通用模型,并将其命名为TS-m6A-DL,该模型可以对人类(智人)、小鼠(小家鼠)和大鼠(褐家原创 2022-01-30 00:11:22 · 1064 阅读 · 3 评论 -
【论文解读:bCNN-Methylpred: Feature-Based Prediction of RNA Sequence Modification Using Branch Convoluti】
@TOC摘要RNA修饰在各种细胞和生物过程中都至关重要。在现有的RNA修饰中,n6-甲基腺苷(m6a)被认为是最重要的修饰,因为它参与了许多生物过程的修饰。m6a位点的预测是至关重要的,因为它可以更好地理解其功能机制。在这方面,虽然实验方法是有用的,但它们却很耗时。以前,研究人员曾试图使用计算方法来预测m6a位点,以克服实验方法的局限性。其中一些方法是基于经典的机器学习技术,它们依赖于手工制作的特性,并需要领域知识,而其他的方法则是基于深度学习的。然而,这两种方法都缺乏鲁棒性,产生的精度较低。因此,我们原创 2021-12-29 21:59:29 · 1006 阅读 · 0 评论 -
论文解读<<基于分布式特征表示的深度学习模型识别蔷薇科基因组中的DNA n4 -甲基胞嘧啶位点>>
论文解读<<基于分布式特征表示的深度学习模型识别蔷薇科基因组中的DNA n4 -甲基胞嘧啶位点>>摘要DNA n4 -甲基胞嘧啶(4mC)是在原核生物和真核生物中发现的一种表观遗传修饰,涉及许多生物学功能,包括宿主防御、转录调节、基因表达和DNA复制。为了识别4mC站点,以前的计算研究主要集中在寻找手工制作的特征。因此,这一研究领域将受益于计算机方法的发展,该方法依赖自动特征选择来识别相关的地点。本文报道了4mC-w2vec,一种基于分布式特征表示,通过单词嵌入技术“word2v原创 2021-11-06 17:38:14 · 872 阅读 · 0 评论 -
论文解读《使用支持向量机和PSSM谱预测蛋白质中的RNA结合位点》
论文解读《使用支持向量机和PSSM谱预测蛋白质中的RNA结合位点》一、 摘要二、介绍三、材料和方法1、 主要数据集2、替代数据集3、五倍交叉验证4、图案或窗口尺寸5、支持向量机6、演变的信息7、性能测量结果1、成分分析2、使用氨基酸序列的SVM模型3、基于进化信息的SVM模型一、 摘要RNA结合蛋白(RNA-binding proteins, RBPs)在基因表达的转录后控制中起着关键作用,与转录调控一起,是调控基因在发育过程中表达模式的主要途径。因此,RNA结合位点的识别和预测是全面了解rbp控制机体原创 2021-10-24 20:49:22 · 952 阅读 · 0 评论 -
m6AmPred:基于序列衍生信息识别 RNA N6、2‘-O-二甲基腺苷 (m6Am) 位点
#m6AmPred:基于序列衍生信息识别 RNA N6、2’-O-二甲基腺苷 (m6Am) 位点数据:https://www.xjtlu.edu.cn/biologicalsciences/m6am目录1、介绍2、材料和方法2、结果介绍NA的动态表观遗传修饰已成为过去几年生物学研究的重要焦点。自从发现第一个结构修饰的核苷以来,已经表征了 170 多种转录后修饰[1,2]。在几乎所有类型的 RNA 上都发现了 RNA 修饰,包括 mRNA、rRNA、tRNA 和 snRNA,它们在调节生物功能方原创 2021-08-27 22:31:36 · 773 阅读 · 0 评论