力扣:考试的最大困扰度

考试的最大困扰度

一位老师正在出一场由 n 道判断题构成的考试,每道题的答案为 true (用 'T' 表示)或者 false (用 'F' 表示)。老师想增加学生对自己做出答案的不确定性,方法是 最大化连续相同 结果的题数。(也就是连续出现 true 或者连续出现 false)。

给你一个字符串 answerKey ,其中 answerKey[i] 是第 i 个问题的正确结果。除此以外,还给你一个整数 k ,表示你能进行以下操作的最多次数:

  • 每次操作中,将问题的正确答案改为 'T' 或者 'F' (也就是将 answerKey[i] 改为 'T' 或者 'F' )。

请你返回在不超过 k 次操作的情况下,最大 连续 'T' 或者 'F' 的数目。

示例 1:

输入:answerKey = "TTFF", k = 2
输出:4
解释:我们可以将两个 'F' 都变为 'T' ,得到 answerKey = "TTTT" 。
总共有四个连续的 'T' 。

示例 2:

输入:answerKey = "TFFT", k = 1
输出:3
解释:我们可以将最前面的 'T' 换成 'F' ,得到 answerKey = "FFFT" 。
或者,我们可以将第二个 'T' 换成 'F' ,得到 answerKey = "TFFF" 。
两种情况下,都有三个连续的 'F' 。

示例 3:

输入:answerKey = "TTFTTFTT", k = 1
输出:5
解释:我们可以将第一个 'F' 换成 'T' ,得到 answerKey = "TTTTTFTT" 。
或者我们可以将第二个 'F' 换成 'T' ,得到 answerKey = "TTFTTTTT" 。
两种情况下,都有五个连续的 'T' 。

利用双指针进行模拟

class Solution {
public:
    int maxConsecutiveAnswers(string answerKey, int k) {
        int len = answerKey.size(),sum_t = 0,sum_f = 0;        
        //实时记录对应的t和f的总数
        int left_t = 0,left_f = 0,max_sum = 0;                 
        //遍历过程中t数列和f数列的左边界
        for(int i = 0;i < len;i++){            //i可以理解为右边界
            if(answerKey[i] == 'F')
               sum_f++;
            else sum_t++;
            //如果超过了,就要左边界向右移动,直到F的数量恢复正常标准
            while(sum_f > k){
                if(answerKey[left_t] == 'F')
                   sum_f--;
                left_t++;
            }
            //把F理解为主数列,那么T就是冗余项
            while(sum_t > k){
                if(answerKey[left_f] == 'T')
                   sum_t--;
                left_f++;
            }
            //比较取最大值
            max_sum = max(max_sum,max(i-left_t,i-left_f)+1);
        }
        return max_sum;
    }
};

后来看到了一个很牛逼的做法

unordered_map是一个将key和value关联起来的容器,它可以高效的根据单个key值查找对应的value。
key值应该是唯一的,key和value的数据类型可以不相同。
unordered_map存储元素时是没有顺序的,只是根据key的哈希值,将元素存在指定位置,所以根据key查找单个value时非常高效,平均可以在常数时间内完成。
unordered_map查询单个key的时候效率比map高,但是要查询某一范围内的key值时比map效率低。
可以使用[]操作符来访问key值对应的value值。
class Solution {
public:
    int maxConsecutiveAnswers(string answerKey, int k) {
        //t可变f,f可变t,只需要判断个数在进行操作

        unordered_map<char,int> M;
        int n = answerKey.size();
        int maxx = 0;
        for(int l = 0,r = 0 ; r < n;r ++)
        {
            M[answerKey[r]] ++ ;
            if(min(M['T'],M['F'])>k)
                M[answerKey[l++]]--;
            maxx = max(maxx,r - l + 1);
        }
        return maxx;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值