考试的最大困扰度
一位老师正在出一场由 n
道判断题构成的考试,每道题的答案为 true (用 'T'
表示)或者 false (用 'F'
表示)。老师想增加学生对自己做出答案的不确定性,方法是 最大化 有 连续相同 结果的题数。(也就是连续出现 true 或者连续出现 false)。
给你一个字符串 answerKey
,其中 answerKey[i]
是第 i
个问题的正确结果。除此以外,还给你一个整数 k
,表示你能进行以下操作的最多次数:
- 每次操作中,将问题的正确答案改为
'T'
或者'F'
(也就是将answerKey[i]
改为'T'
或者'F'
)。
请你返回在不超过 k
次操作的情况下,最大 连续 'T'
或者 'F'
的数目。
示例 1:
输入:answerKey = "TTFF", k = 2
输出:4
解释:我们可以将两个 'F' 都变为 'T' ,得到 answerKey = "TTTT" 。
总共有四个连续的 'T' 。
示例 2:
输入:answerKey = "TFFT", k = 1
输出:3
解释:我们可以将最前面的 'T' 换成 'F' ,得到 answerKey = "FFFT" 。
或者,我们可以将第二个 'T' 换成 'F' ,得到 answerKey = "TFFF" 。
两种情况下,都有三个连续的 'F' 。
示例 3:
输入:answerKey = "TTFTTFTT", k = 1
输出:5
解释:我们可以将第一个 'F' 换成 'T' ,得到 answerKey = "TTTTTFTT" 。
或者我们可以将第二个 'F' 换成 'T' ,得到 answerKey = "TTFTTTTT" 。
两种情况下,都有五个连续的 'T' 。
解
利用双指针进行模拟
class Solution {
public:
int maxConsecutiveAnswers(string answerKey, int k) {
int len = answerKey.size(),sum_t = 0,sum_f = 0;
//实时记录对应的t和f的总数
int left_t = 0,left_f = 0,max_sum = 0;
//遍历过程中t数列和f数列的左边界
for(int i = 0;i < len;i++){ //i可以理解为右边界
if(answerKey[i] == 'F')
sum_f++;
else sum_t++;
//如果超过了,就要左边界向右移动,直到F的数量恢复正常标准
while(sum_f > k){
if(answerKey[left_t] == 'F')
sum_f--;
left_t++;
}
//把F理解为主数列,那么T就是冗余项
while(sum_t > k){
if(answerKey[left_f] == 'T')
sum_t--;
left_f++;
}
//比较取最大值
max_sum = max(max_sum,max(i-left_t,i-left_f)+1);
}
return max_sum;
}
};
后来看到了一个很牛逼的做法
unordered_map是一个将key和value关联起来的容器,它可以高效的根据单个key值查找对应的value。
key值应该是唯一的,key和value的数据类型可以不相同。
unordered_map存储元素时是没有顺序的,只是根据key的哈希值,将元素存在指定位置,所以根据key查找单个value时非常高效,平均可以在常数时间内完成。
unordered_map查询单个key的时候效率比map高,但是要查询某一范围内的key值时比map效率低。
可以使用[]操作符来访问key值对应的value值。
class Solution {
public:
int maxConsecutiveAnswers(string answerKey, int k) {
//t可变f,f可变t,只需要判断个数在进行操作
unordered_map<char,int> M;
int n = answerKey.size();
int maxx = 0;
for(int l = 0,r = 0 ; r < n;r ++)
{
M[answerKey[r]] ++ ;
if(min(M['T'],M['F'])>k)
M[answerKey[l++]]--;
maxx = max(maxx,r - l + 1);
}
return maxx;
}
};