YOLOv7-tiny 模型详解

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

  • "nc: 80" 表示类别数量(number of classes),这里设定为80个类别。这通常用于目标检测任务中,表示模型需要检测的不同物体类别的数量。
  • "depth_multiple: 1.0" 表示模型深度的倍数(depth multiple)为1.0。这个参数用于调整模型的深度,可以控制模型的复杂程度。
  • "width_multiple: 1.0" 表示层的通道数(channel)的倍数为1.0。这个参数可以调整模型的宽度,决定每个层的输出通道数量。

通过调整这些参数,可以对模型的结构和参数进行灵活的控制,以满足不同的需求和条件。例如,增加类别数量可以使模型具有更好的分类能力,调整深度和宽度可以平衡模型的性能和计算资源之间的权衡。

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

这些是一些检测框的高宽值

# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  
  
   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7
   
   [-1, 1, MP, []],  # 8-P3/8
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14
   
   [-1, 1, MP, []],  # 15-P4/16
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21
   
   [-1, 1, MP, []],  # 22-P5/32
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28
  ]

解释: "[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]]" 表示这一层从上一层的特征图获取输入,然后使用一个卷积操作(Conv)进行处理。 - [32, 3, 2, None, 1, nn.LeakyReLU(0.1)] 是卷积操作的参数,具体含义如下: - 32 表示输出通道数(output channels),即输出特征图的深度。 - 3 表示卷积核的大小(kernel size),这里是一个 3x3 的卷积核。 - 2 表示卷积操作的步幅(stride),这里的步幅为 2,表示在水平和垂直方向上每次移动 2 个像素。 - None 表示没有使用填充(padding),默认情况下卷积操作会使得特征图的尺寸减小。 - 1 表示组(group)的个数,默认为 1 表示没有分组卷积。 - nn.LeakyReLU(0.1) 表示使用 LeakyReLU 作为激活函数,其中 0.1 是负斜率(negative slope)参数。

这段代码是 YOLOv7-tiny 模型的主干网络(backbone)部分的定义。

主干网络是深度学习模型的基础部分,负责从输入图像中提取特征以用于后续任务,如目标检测。

在这段代码中,backbone 由一系列的卷积层(Conv)和最大池化层(MP)组成。每个卷积层都有一些参数,例如卷积核的大小(kernel size)、步幅(stride)、填充(padding)、组(group)和激活函数(activation function)等。

这段代码中的注释提供了每个层的功能和相对于输入特征图的大小。例如,“0-P1/2”表示该层生成了特征图 P1,其相对于输入特征图大小的缩放比例为 1/2。

此外,还有一些拼接层(Concat),用于将不同层的特征图拼接在一起。

整个主干网络共有 29 个层次,从输入图像逐渐提取越来越高级的特征。这些特征将用于接下来的检测任务。

# yolov7-tiny head
head:
  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, SP, [5]],
   [-2, 1, SP, [9]],
   [-3, 1, SP, [13]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -7], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37
  
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47
  
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57
   
   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 47], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65
   
   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 37], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73
      
   [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

   [[74,75,76], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

头部网络的作用是对主干网络提取的特征进行进一步处理,以获得最终的检测结果。

在这段代码中,头部网络由一系列的卷积层(Conv)、空间金字塔层(SP)、上采样层(nn.Upsample)等组成。

每个层次都有许多参数,例如卷积核的大小(kernel size)、步幅(stride)、填充(padding)、激活函数(activation function)等。并且注释提供了相对于主干网络特征图的缩放比例。

除了这些常规操作之外,还可以看到拼接层(Concat)和检测层(IDetect)。

其中,拼接层将不同层次的特征图进行拼接,以合并信息。

检测层是用于检测目标的最终输出层。这里将 P3、P4 和 P5 特征图输入到 IDetect 层以检测目标,并提供了类别数量(nc)和锚点信息(anchors)。

  • 8
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
YOLOv7-tiny是一种用于目标检测的深度学习模型,是YOLO系列的一个轻量级版本。如果要对YOLOv7-tiny模型进行修改,可以考虑以下几个方面: 1. 网络结构修改:YOLOv7-tiny模型的基本结构包括多个卷积层和全连接层,可以通过修改网络的层数、通道数、卷积核大小等参数来改变模型的性能和速度。例如,增加卷积层和残差连接可以提高模型的感知能力,但会增加计算复杂度。 2. 特征提取器修改:YOLOv7-tiny使用的是Darknet作为特征提取器,可以考虑使用其他更先进的特征提取器,如ResNet、MobileNet等。这些特征提取器具有更好的感知能力和更小的参数量,能够提高模型的检测精度和速度。 3. 数据增强方法修改:数据增强是提高模型泛化能力和鲁棒性的重要手段。可以通过修改数据增强的方式来改善模型的性能。例如,可以增加随机裁剪、旋转、平移、缩放等操作来增加训练样本的丰富度,增强模型对于不同尺度和角度目标的检测能力。 4. 损失函数修改:YOLOv7-tiny使用的损失函数是YOLO系列中的独特设计,可以根据实际需求对损失函数进行修改。例如,可以调整不同物体类别的权重,改变置信度的计算方式,或者增加其他辅助任务的损失项等。 5. 后处理方法修改:YOLOv7-tiny使用非最大抑制(NMS)作为后处理方法,可以考虑使用其他更高效或更准确的后处理方法来进一步优化检测结果。例如,可以使用Soft-NMS或者对象级别的置信度修正方法来改善模型对于密集目标或遮挡目标的检测效果。 综上所述,对于YOLOv7-tiny模型的修改可以从网络结构、特征提取器、数据增强方法、损失函数以及后处理方法等方面进行调整和优化,以适应不同的应用场景和要求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值