Denoising: A Powerful Building-Block for Imaging, Inverse Problems, and Machine Learning

Denoising: A Powerful Building-Block for Imaging, Inverse Problems, and Machine Learning

1 Introduction

  • 去噪是一个基础而复杂的问题,尽管容易描述,但在实践中很难实现。自现代科学技术出现以来,去噪技术便不断发展,因为几乎所有传感器在记录数据时都会受到噪声的影响。
  • 作者提出,图像 x 由“干净”部分 u 和“噪声”部分 e 组成,目的是通过去噪器 f(x;α) 恢复 u。理想的去噪器应具备特定属性,如在无噪声的情况下能重现输入,并且具有对称的雅可比矩阵。
  • 尽管许多去噪器不理想,作者希望通过对理想去噪器的研究,揭示其重要性和在实际应用中的表现。文章将探讨去噪器的结构及其在成像、逆问题和机器学习中的广泛应用。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2 Denoising as a Natural Decomposition

良好的去噪器可以将图像x 分解为平滑的成分和细节成分,去噪器f(x;α) 可以将图像写成以下形式:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

第一项是去噪后的平滑图像,第二项是残差r0(x,α),表示高频成分。通过多次应用去噪器,作者展示了如何将图像进一步分解为多个层次的平滑成分和残差。

但是多次运用运算符并不能导致完全平滑的结果,例如反复使用双边滤波器,结果是分段常数函数。因此本文提出的观点更通用,适用于任何降噪器。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

这种分解方法不仅允许去噪,还可以通过调整不同层次的成分来创建多种图像处理效果。作者指出,理想的去噪器在组合和复合时保持理想特性,这一特性使得它们在应用于复杂任务时表现出色。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

与残差网络的联系

去噪与残差网络之间的联系不仅在于结构上的相似性,也在于它们在处理信息时所采用的策略:通过建模残差而非直接建模完整映射,使得学习过程更加高效。

残差网络的原理

残差网络的核心思想是通过“跳跃连接”(skip connections)来简化学习过程,传统的深度神经网络通常试图直接学习输入与输出之间的复杂映射。

而ResNet采用了一种不同的方法:它学习的是残差映射。具体而言,给定输入 x 和期望的复杂映射 HH(x),ResNet尝试学习一个残差函数 F(x),使得:H(x)=x+F(x) 。这种结构允许网络保留原始输入 xx 的信息,同时在其基础上进行调整,这样可以更容易地优化和训练深层网络。

与去噪的相似性

作者指出,去噪过程中的分解方式与残差网络的思想有着密切的联系。具体而言,去噪器可以将图像 x 表示为:x=f(x,α)+r0(x,α) 。 其中,f(x,α) 是去噪后的平滑成分,而 r0(x,α) 是残差项,类似于F(x) 中的残差。去噪器实际上是在学习如何从输入中去除噪声,并保留重要的结构信息。

优化和梯度问题

此外,使用跳跃连接能有效缓解梯度消失问题,这在深层网络中尤为重要。通过保留原始输入的信息,去噪器和残差网络都能确保在训练过程中重要信息不会丢失,从而提高模型的性能和收敛速度。

用于异常检测的图像降噪器

基于去噪的分解方法

作者提出了一种基于去噪的分解方法,通过将图像分解为自相似成分和残差成分来实现异常检测。具体步骤如下:

  1. 去噪操作:使用去噪器 f(x,α) 对图像 x 进行处理,得到平滑的背景成分 f(x,α)。
  2. 残差计算:计算残差成分 r(x,α)=xf(x,α),该成分包含高频特征,通常包括细节和异常。

异常检测流程

在检测过程中,残差成分 r(x,α) 被视为潜在的异常区域。由于正常图像大多表现出平滑性和自相似性,任何偏离这种模式的区域都可能被视为异常。

  1. 自相似性分析:通过分析去噪后图像的自相似性,能够有效地识别出与背景成分不一致的区域。
  2. 统计检验:对残差图像进行统计测试,以确定哪些区域显著偏离正常模式,从而识别异常。

分析图像的自相似性:分块处理-特征提取(颜色直方图、纹理特征、边缘特征)-相似性度量(欧几里得距离、余弦相似度、相关系数)-构建相似性矩阵-聚类分析-自相似性图-统计分析-应用与检测(异常检测、图像重建)

3 The Structure of General Denoisers

详细探讨了去噪器的结构及其分类,重点分析了不同类型的去噪方法及其理论基础

贝叶斯去噪器

利用先验知识P(u) 来估计“干净”图像*u,*主要包括最大后验估计MAP最小均方误差MMSE

能量基础去噪器

能量基础去噪器提供了一种经验性的设计机制。通过定义适当的能量函数,可以在去噪过程中实现良好的性能。作者提到,通过将去噪问题表示为对分布P(x,α) 的平滑处理,可以使得去噪器的设计与经验贝叶斯方法相一致。

一般去噪器的属性

强调了理想去噪器应具备的几个重要属性:

  • 恒等性:在无噪声情况下,去噪器应能重现输入,即 f(x,0)=x
  • 守恒性:理想去噪器的雅可比矩阵应为对称,即 ∇f(x,α)=∇f(x,α)T
  • 组合闭合性:理想去噪器在仿射组合和复合下应保持理想特性

雅可比矩阵在优化、数值分析和控制理论中具有重要应用,因为它能够提供关于函数变化率的信息。组合闭合性则确保在特定操作下,理想去噪器的性质得以保持。

4 Denoising, the Score Function, and Generative Modeling

4.1 得分函数的定义

得分函数是指数据分布的对数密度函数的梯度。给定概率密度函数p(x),得分函数定义为:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

得分函数提供了在给定点x处,数据分布的变化率信息,对于理解数据结构和生成新样本非常重要。

4.2 去噪与得分函数的联系

作者指出,去噪过程可以看作是对得分函数的估计。具体而言,通过去噪器f(x,α) 处理受噪声影响的样本 x,可以得到一个平滑的近似,反映了数据分布的得分函数。去噪技术能够提供对噪声分布的建模,从而在生成模型中发挥作用。

过程描述

  1. 受噪声影响的样本:考虑一个受噪声影响的样本 x=u+e,其中 u 是干净样本,e 是噪声。
  2. 去噪操作:通过去噪器 u^=f(x,α) 估计干净样本 u
  3. 得分函数的估计:通过对去噪样本的分析,可以推导出得分函数的近似,从而帮助生成模型生成新样本。

4.3 生成模型的构建

在生成模型中,利用得分函数可以实现样本的生成。具体方法包括:

  • 噪声消除生成模型:通过逐步去噪的方法,从随机噪声开始,利用得分函数逐渐生成清晰样本。
  • 反向扩散过程:在扩散模型中,通过对样本进行逐步去噪,能够从简单的噪声分布生成复杂的样本分布,反映数据的真实特征。

4.4 反向扩散与去噪

反向扩散过程是生成建模中的一个重要方法。它通过定义一个扩散过程,将数据从真实分布p(x) 转变为简单的噪声分布pT(x),然后利用去噪来逆转这一过程。

  1. 正向扩散:将数据逐渐添加噪声,使其分布趋向于简单的分布(如高斯分布)。
  2. 反向去噪:从最终的噪声样本开始,通过去噪过程逐步恢复样本,最终生成与原始数据分布相似的新样本。

得分函数的具体应用:生成模型(扩散模型、生成对抗网络)、无监督学习(异常检测、密度估计)、优化与训练(梯度优化、正则化)、特征学习(特征表示)

5 Denoisers in the Context of Inverse Problems

逆问题是指在给定观察数据的情况下推断潜在原因或未知参数的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值