CVPR 2025 论文和开源项目合集 | CVer-Papers-with-Code

CVPR 2025 论文和开源项目合集(Papers with Code) 

CVPR 2025 decisions are now available on OpenReview!22.1% = 2878 / 13008

注1:欢迎各位大佬提交issue,分享CVPR 2025论文和开源项目!

注2:关于往年CV顶会论文以及其他优质CV论文和大盘点,详见: https://github.com/amusi/daily-paper-computer-vision

【CVPR 2025 论文开源目录】

3DGS(Gaussian Splatting)

Avatars

Backbone

CLIP

Mamba

MambaVision: A Hybrid Mamba-Transformer Vision Backbone

MobileMamba: Lightweight Multi-Receptive Visual Mamba Network

Embodied AI

CityWalker: Learning Embodied Urban Navigation from Web-Scale Videos

GAN

OCR

NeRF

DETR

Prompt

多模态大语言模型(MLLM)

LSceneLLM: Enhancing Large 3D Scene Understanding Using Adaptive Visual Preferences

DynRefer: Delving into Region-level Multimodal Tasks via Dynamic Resolution

Retrieval-Augmented Personalization for Multimodal Large Language Models

大语言模型(LLM)

NAS

ReID(重识别)

From Poses to Identity: Training-Free Person Re-Identification via Feature Centralization

AirRoom: Objects Matter in Room Reidentification

扩散模型(Diffusion Models)

TinyFusion: Diffusion Transformers Learned Shallow

Vision Transformer

视觉和语言(Vision-Language)

NLPrompt: Noise-Label Prompt Learning for Vision-Language Models

目标检测(Object Detection)

LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision of Large Language Models

异常检测(Anomaly Detection)

目标跟踪(Object Tracking)

Multiple Object Tracking as ID Prediction

Omnidirectional Multi-Object Tracking

医学图像(Medical Image)

医学图像分割(Medical Image Segmentation)

自动驾驶(Autonomous Driving)

LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes

3D点云(3D-Point-Cloud)

3D目标检测(3D Object Detection)

3D语义分割(3D Semantic Segmentation)

Low-level Vision

超分辨率(Super-Resolution)

AESOP: Auto-Encoded Supervision for Perceptual Image Super-Resolution

去噪(Denoising)

图像去噪(Image Denoising)

3D人体姿态估计(3D Human Pose Estimation)

图像生成(Image Generation)

Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models

SleeperMark: Towards Robust Watermark against Fine-Tuning Text-to-image Diffusion Models

TokenFlow: Unified Image Tokenizer for Multimodal Understanding and Generation

PAR: Parallelized Autoregressive Visual Generation

Generative Photography: Scene-Consistent Camera Control for Realistic Text-to-Image Synthesis

视频生成(Video Generation)

Identity-Preserving Text-to-Video Generation by Frequency Decomposition

Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models

X-Dyna: Expressive Dynamic Human Image Animation

PhyT2V: LLM-Guided Iterative Self-Refinement for Physics-Grounded Text-to-Video Generation

Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model

AR-Diffusion: Asynchronous Video Generation with Auto-Regressive Diffusion

图像编辑(Image Editing)

Edit Away and My Face Will not Stay: Personal Biometric Defense against Malicious Generative Editing

h-Edit: Effective and Flexible Diffusion-Based Editing via Doob’s h-Transform

视频编辑(Video Editing)

3D生成(3D Generation)

Generative Gaussian Splatting for Unbounded 3D City Generation

StdGEN: Semantic-Decomposed 3D Character Generation from Single Images

3D重建(3D Reconstruction)

Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass

人体运动生成(Human Motion Generation)

SemGeoMo: Dynamic Contextual Human Motion Generation with Semantic and Geometric Guidance

视频理解(Video Understanding)

Temporal Grounding Videos like Flipping Manga

具身智能(Embodied AI)

Universal Actions for Enhanced Embodied Foundation Models

知识蒸馏(Knowledge Distillation)

深度估计(Depth Estimation)

DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos

MonSter: Marry Monodepth to Stereo Unleashes Power

立体匹配(Stereo Matching)

MonSter: Marry Monodepth to Stereo Unleashes Power

暗光图像增强(Low-light Image Enhancement)

HVI: A New color space for Low-light Image Enhancement

ReDDiT: Efficient Diffusion as Low Light Enhancer

场景图生成(Scene Graph Generation)

风格迁移(Style Transfer)

StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements

视频质量评价(Video Quality Assessment)

数据集(Datasets)

其他(Others)

注:All copied from [GitHub - amusi/CVPR2025-Papers-with-Code: CVPR 2025 论文和开源项目合集]

### CVPR 2025 Accepted Papers List 截至当前时间,尚未有官方发布的关于CVPR 2025的录用文章列表[^1]。通常情况下,CVPR会议的录用文章会在会议召开前几个月通过官方网站或OpenAccess平台发布。例如,在过去的几年中,CVPR 2022的录用文章可以通过以下链接访问:https://openaccess.thecvf.com/CVPR2022?day=all。 如果希望获取最新的CVPR 2025录用文章列表,建议定期关注The Conference on Computer Vision and Pattern Recognition (CVPR) 的官方网站以及相关的学术社区公告。此外,可以订阅CVF(Computer Vision Foundation)的通知邮件,以便第一时间获得更新信息。 对于其他顶会如NeurIPS、ICML、ECCV等,其论文列表也会在其各自的官网或虚拟会议平台上公布。例如,ICLR 2024的录用文章可通过以下链接找到:https://openreview.net/group?id=ICLR.cc/2024/Conference#tab-accept-oral[^3]。 以下是部分顶会的历史论文列表参考地址: - **CVPR**: https://cvpr.thecvf.com/ - **ICLR**: https://openreview.net/ - **ICML**: https://icml.cc/ 一旦CVPR 2025的录取名单公开,上述网站将是主要的信息来源之一。 ```python import requests from bs4 import BeautifulSoup def check_cvpr_papers(year): url = f"https://openaccess.thecvf.com/CVPR{year}?day=all" response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') titles = [title.text.strip() for title in soup.find_all('dt', class_='ptitle')] return titles else: return None papers_2025 = check_cvpr_papers(2025) if not papers_2025: print("CVPR 2025 paper list is not available yet.") else: print(f"Found {len(papers_2025)} papers in CVPR 2025.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值