1.证明命题11.2:
用 Q \mathbb{Q} Q R \mathbb{R} R p _p p表示模p的 Q R \mathbf{QR} QR的集合, Q \mathbb{Q} Q R \mathbb{R} R p _p p在乘法上成群。
证:
①根据命题11.3,
Q
R
\mathbf{QR}
QR
×
\times
×
Q
R
\mathbf{QR}
QR=
Q
R
\mathbf{QR}
QR
(
m
o
d
p
)
\pmod{p}
(modp),因此满足了封闭性。
②由于
Z
p
∗
\mathbb{Z}^*_p
Zp∗满足结合律,因此,
R
\mathbb{R}
R
p
_p
p在乘法上满足结合律。
③设单位元为e。a
2
^2
2e
2
^2
2
≡
\equiv
≡e
2
^2
2a
2
^2
2
≡
\equiv
≡a
2
^2
2
(
m
o
d
p
)
\pmod{p}
(modp) ,单位元存在,为1。
④
∀
x
∈
\forall x\in
∀x∈
Q
\mathbb{Q}
Q
R
\mathbb{R}
R
p
_p
p,
∃
a
∈
Z
p
∗
\exists a\in\mathbb{Z}_p^*
∃a∈Zp∗,使得
x
≡
a
2
(
m
o
d
p
)
x\equiv a^2\pmod{p}
x≡a2(modp).
x
(
a
−
1
)
2
≡
a
2
(
a
−
1
)
2
≡
(
m
o
d
p
)
x(a^{-1})^2\equiv a^2(a^{-1})^2\equiv\pmod{p}
x(a−1)2≡a2(a−1)2≡(modp)
x
−
1
≡
(
a
−
1
)
2
(
m
o
d
p
)
x^{-1} \equiv(a^{-1})^2\pmod{p}
x−1≡(a−1)2(modp)
存在乘法逆元。
综上所述, Q \mathbb{Q} Q R \mathbb{R} R p _p p在乘法上满足群公理。
2.使用群论的方法证明定理11.1:
设 p 为奇素数,则刚好存在 (p − 1)/2个模p的 Q R \mathbf{QR} QR和(p − 1)/2个模p的 Q N R \mathbf{QNR} QNR。
证:
设
ψ
Z
p
∗
→
Q
R
\psi\mathbb{Z}^*_p\rightarrow\mathbb{Q}\mathbb{R}
ψZp∗→QR
p
_p
p为
a
→
a
2
a\rightarrow a^2
a→a2。
因此,
∀
a
,
b
∈
Z
p
∗
\forall a,b\in \mathbb{Z}^*_p
∀a,b∈Zp∗,
ψ
(
a
b
)
=
(
a
b
)
2
=
a
2
b
2
=
ψ
(
a
)
∘
ψ
(
b
)
\psi(ab)=(ab)^2=a^2b^2=\psi(a)\circ\psi(b)
ψ(ab)=(ab)2=a2b2=ψ(a)∘ψ(b),
ψ
\psi
ψ是群同态。
因为
Q
R
p
\mathbb{QR}_p
QRp的单位元是1,所以
K
e
r
ψ
=
1
Ker\psi=1
Kerψ=1,
K
\mathbb{K}
K是
Z
p
∗
\mathbb{Z}^*_p
Zp∗的正规子群。
因此存在标准同态
Φ
:
Z
p
∗
/
K
\Phi:\mathbb{Z^*_p/K}
Φ:Zp∗/K,根据第一同构定理,存在唯一同构映射
Z
p
∗
→
Z
p
∗
/
K
\mathbb{Z^*_p}\rightarrow\mathbb{Z^*_p/K}
Zp∗→Zp∗/K,因此
∣
\mid
∣
Q
\mathbb{Q}
Q
R
\mathbb{R}
R
p
∣
_p\mid
p∣=
∣
Z
p
∗
/
K
∣
\mid\mathbb{Z^*_p/K}\mid
∣Zp∗/K∣=
∣
Z
p
∗
∣
∣
K
∣
\frac{\mid\mathbb{Z^*_p}\mid}{\mid\mathbb{K}\mid}
∣K∣∣Zp∗∣=
p
−
1
2
\frac{p-1}{2}
2p−1。
原命题得证。
3.定义映射 ψ \psi ψ: Z p ∗ \mathbb{Z}_p^* Zp∗ → \rightarrow → { \lbrace { ± \pm ±$ } \rbrace }为 ψ \psi ψ(a)=( a p \frac{a}{p} pa), ∀ \forall ∀a ∈ \in ∈ Z p ∗ \mathbb{Z}_p^* Zp∗。请证明这是一个满同态。
证:
根据题意,
ψ
(
a
b
)
=
(
a
b
p
)
=
(
a
p
)
(
b
p
)
=
ψ
(
a
)
ψ
(
b
)
\psi(ab)=(\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p})=\psi(a)\psi(b)
ψ(ab)=(pab)=(pa)(pb)=ψ(a)ψ(b),
ψ
\psi
ψ是群同态。
∀
a
∈
Z
p
∗
\forall a\in\mathbb{Z^*_p}
∀a∈Zp∗,
a
a
a为
Q
R
\mathbf{QR}
QR时
ψ
(
a
)
=
1
\psi(a)=1
ψ(a)=1,a为
Q
N
R
\mathbf{QNR}
QNR时
ψ
(
a
)
=
−
1
\psi(a)=-1
ψ(a)=−1。
因此
ψ
\psi
ψ为满同态。
原命题得证。
4.设p是奇素数,请证明 Z p ∗ \mathbb{Z}_p^* Zp∗的所有生成元都是模p的二次非剩余。
证:
设g为
Z
p
∗
\mathbb{Z}_p^*
Zp∗的任意一个生成元。
根据欧拉定理,
g
ϕ
(
p
−
1
)
≡
(
m
o
d
p
)
g^{\phi(p-1)}\equiv\pmod{p}
gϕ(p−1)≡(modp)
g
≡
x
2
(
m
o
d
p
)
g\equiv x_2\pmod{p}
g≡x2(modp),
g
p
−
1
g
≡
x
2
(
m
o
d
p
)
g^{p-1}g\equiv x_2\pmod{p}
gp−1g≡x2(modp),
g
p
≡
x
2
(
m
o
d
p
)
g_p\equiv x^2\pmod{p}
gp≡x2(modp),
(
p
p
2
)
2
≡
x
2
(
m
o
d
p
)
(p^{\frac{p}{2}})^2\equiv x^2 \pmod{p}
(p2p)2≡x2(modp),
根据p是奇素数,
p
2
∉
Z
\frac{p}{2}\notin\mathbb{Z}
2p∈/Z,因此不存在
g
≡
x
2
(
m
o
d
p
)
g\equiv x^2\pmod{p}
g≡x2(modp)。
因此,
Z
p
∗
\mathbb{Z}_p^*
Zp∗的所有生成元都是模p的二次非剩余。
原命题得证。
5.证明命题11.4
设p是奇素数,a,b ∈ Z \in\mathbb{Z} ∈Z且不被p整除。则有:
1.如果 a ≡ b (mod p),则 ( a p ) (\frac{a}{p}) (pa)= ( b p ) (\frac{b}{p}) (pb);
2. ( a p ) (\frac{a}{p}) (pa) ( b p ) (\frac{b}{p}) (pb)= ( a b p ) (\frac{ab}{p}) (pab);
3. ( a 2 p ) (\frac{a^2}{p}) (pa2)=1。
证:
证明1.:
a
a
a为
Q
R
\mathbf{QR}
QR时,
a
≡
b
≡
x
2
(
m
o
d
p
)
a\equiv b\equiv x^2\pmod{p}
a≡b≡x2(modp),因此
b
b
b为
Q
R
\mathbf{QR}
QR,
(
a
p
)
(\frac{a}{p})
(pa)=
(
b
p
)
(\frac{b}{p})
(pb)。
a
a
a为
Q
N
R
\mathbf{QNR}
QNR时,
a
≡
b
≢
x
2
(
m
o
d
p
)
a\equiv b\not\equiv x^2\pmod{p}
a≡b≡x2(modp),因此
b
b
b为
Q
N
R
\mathbf{QNR}
QNR。
原命题得证。
证明2.:
a
,
b
a,b
a,b为
Q
R
\mathbf{QR}
QR时,ab=
Q
R
\mathbf{QR}
QR
×
\times
×
Q
R
\mathbf{QR}
QR=
Q
R
\mathbf{QR}
QR,因此
(
a
p
)
(\frac{a}{p})
(pa)
(
b
p
)
(\frac{b}{p})
(pb)=
(
a
b
p
)
(\frac{ab}{p})
(pab)。
a
,
b
a,b
a,b一个为
Q
R
\mathbf{QR}
QR一个为
Q
N
R
\mathbf{QNR}
QNR时,ab=
Q
R
\mathbf{QR}
QR
×
\times
×
Q
N
R
\mathbf{QNR}
QNR=
Q
N
R
\mathbf{QNR}
QNR或ab=
Q
N
R
\mathbf{QNR}
QNR
×
\times
×
Q
R
\mathbf{QR}
QR=
Q
N
R
\mathbf{QNR}
QNR,因此
(
a
p
)
(\frac{a}{p})
(pa)
(
b
p
)
(\frac{b}{p})
(pb)=
(
a
b
p
)
(\frac{ab}{p})
(pab)。
a
,
b
a,b
a,b为
Q
N
R
\mathbf{QNR}
QNR时,ab=
Q
N
R
\mathbf{QNR}
QNR
×
\times
×
Q
N
R
\mathbf{QNR}
QNR=
Q
N
R
\mathbf{QNR}
QNR,因此
(
a
p
)
(\frac{a}{p})
(pa)
(
b
p
)
(\frac{b}{p})
(pb)=
(
a
b
p
)
(\frac{ab}{p})
(pab)。
证明3.:
因为
a
∈
Z
a\in\mathbb{Z}
a∈Z,所以
a
2
a^2
a2为
Q
R
\mathbf{QR}
QR,因此
(
a
2
p
)
(\frac{a^2}{p})
(pa2)=1。
综上,原命题得证。
6.给出推论11.1的完整证明。
证:
当
p
≡
1
(
m
o
d
4
)
p\equiv1\pmod{4}
p≡1(mod4)时,设p=4k+1,其中k为整数。
根据欧拉定理,
(
−
1
p
)
≡
(
−
1
)
p
−
1
2
=
(
−
1
)
4
k
2
=
(
−
1
)
2
k
=
1
(
m
o
d
p
)
(\frac{-1}{p})\equiv(-1)^{\frac{p-1}{2}}=(-1)^{\frac{4k}{2}}=(-1)^{2k}=1\pmod{p}
(p−1)≡(−1)2p−1=(−1)24k=(−1)2k=1(modp)。
当
p
≡
−
1
(
m
o
d
4
)
p\equiv-1\pmod{4}
p≡−1(mod4)时,设p=4k-1,其中k为整数。
根据欧拉定理,
(
−
1
p
)
≡
(
−
1
)
p
−
1
2
=
(
−
1
)
4
k
−
2
2
=
(
−
1
)
2
k
−
1
=
−
1
(
m
o
d
p
)
(\frac{-1}{p})\equiv(-1)^{\frac{p-1}{2}}=(-1)^{\frac{4k-2}{2}}=(-1)^{2k-1}=-1\pmod{p}
(p−1)≡(−1)2p−1=(−1)24k−2=(−1)2k−1=−1(modp)。
综上,原命题得证。