CINTA:二次剩余

本文详细证明了模p的QR集合在乘法下构成群,包括封闭性、结合律、单位元的存在以及逆元的存在。还运用群论方法探讨了模p QR和QNR的数量,并证明了映射的同态性质。关键概念包括欧拉定理和生成元的二次非剩余特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.证明命题11.2:
Q \mathbb{Q} Q R \mathbb{R} R p _p p表示模p的 Q R \mathbf{QR} QR的集合, Q \mathbb{Q} Q R \mathbb{R} R p _p p在乘法上成群。

证:
①根据命题11.3, Q R \mathbf{QR} QR × \times × Q R \mathbf{QR} QR= Q R \mathbf{QR} QR ( m o d p ) \pmod{p} (modp),因此满足了封闭性。
②由于 Z p ∗ \mathbb{Z}^*_p Zp满足结合律,因此, R \mathbb{R} R p _p p在乘法上满足结合律。
③设单位元为e。a 2 ^2 2e 2 ^2 2 ≡ \equiv e 2 ^2 2a 2 ^2 2 ≡ \equiv a 2 ^2 2 ( m o d p ) \pmod{p} (modp) ,单位元存在,为1。
∀ x ∈ \forall x\in x Q \mathbb{Q} Q R \mathbb{R} R p _p p ∃ a ∈ Z p ∗ \exists a\in\mathbb{Z}_p^* aZp,使得 x ≡ a 2 ( m o d p ) x\equiv a^2\pmod{p} xa2(modp).
x ( a − 1 ) 2 ≡ a 2 ( a − 1 ) 2 ≡ ( m o d p ) x(a^{-1})^2\equiv a^2(a^{-1})^2\equiv\pmod{p} x(a1)2a2(a1)2(modp)
x − 1 ≡ ( a − 1 ) 2 ( m o d p ) x^{-1} \equiv(a^{-1})^2\pmod{p} x1(a1)2(modp)
存在乘法逆元。

综上所述, Q \mathbb{Q} Q R \mathbb{R} R p _p p在乘法上满足群公理。

2.使用群论的方法证明定理11.1:
设 p 为奇素数,则刚好存在 (p − 1)/2个模p的 Q R \mathbf{QR} QR和(p − 1)/2个模p的 Q N R \mathbf{QNR} QNR

证:
ψ Z p ∗ → Q R \psi\mathbb{Z}^*_p\rightarrow\mathbb{Q}\mathbb{R} ψZpQR p _p p a → a 2 a\rightarrow a^2 aa2
因此, ∀ a , b ∈ Z p ∗ \forall a,b\in \mathbb{Z}^*_p a,bZp ψ ( a b ) = ( a b ) 2 = a 2 b 2 = ψ ( a ) ∘ ψ ( b ) \psi(ab)=(ab)^2=a^2b^2=\psi(a)\circ\psi(b) ψ(ab)=(ab)2=a2b2=ψ(a)ψ(b) ψ \psi ψ是群同态。
因为 Q R p \mathbb{QR}_p QRp的单位元是1,所以 K e r ψ = 1 Ker\psi=1 Kerψ=1 K \mathbb{K} K Z p ∗ \mathbb{Z}^*_p Zp的正规子群。
因此存在标准同态 Φ : Z p ∗ / K \Phi:\mathbb{Z^*_p/K} Φ:Zp/K,根据第一同构定理,存在唯一同构映射 Z p ∗ → Z p ∗ / K \mathbb{Z^*_p}\rightarrow\mathbb{Z^*_p/K} ZpZp/K,因此 ∣ \mid Q \mathbb{Q} Q R \mathbb{R} R p ∣ _p\mid p= ∣ Z p ∗ / K ∣ \mid\mathbb{Z^*_p/K}\mid Zp/K= ∣ Z p ∗ ∣ ∣ K ∣ \frac{\mid\mathbb{Z^*_p}\mid}{\mid\mathbb{K}\mid} KZp= p − 1 2 \frac{p-1}{2} 2p1
原命题得证。

3.定义映射 ψ \psi ψ: Z p ∗ \mathbb{Z}_p^* Zp → \rightarrow { \lbrace { ± \pm ±$ } \rbrace } ψ \psi ψ(a)=( a p \frac{a}{p} pa), ∀ \forall a ∈ \in Z p ∗ \mathbb{Z}_p^* Zp。请证明这是一个满同态。

证:
根据题意, ψ ( a b ) = ( a b p ) = ( a p ) ( b p ) = ψ ( a ) ψ ( b ) \psi(ab)=(\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p})=\psi(a)\psi(b) ψ(ab)=(pab)=(pa)(pb)=ψ(a)ψ(b) ψ \psi ψ是群同态。
∀ a ∈ Z p ∗ \forall a\in\mathbb{Z^*_p} aZp a a a Q R \mathbf{QR} QR ψ ( a ) = 1 \psi(a)=1 ψ(a)=1,a为 Q N R \mathbf{QNR} QNR ψ ( a ) = − 1 \psi(a)=-1 ψ(a)=1
因此 ψ \psi ψ为满同态。
原命题得证。

4.设p是奇素数,请证明 Z p ∗ \mathbb{Z}_p^* Zp的所有生成元都是模p的二次非剩余。

证:
设g为 Z p ∗ \mathbb{Z}_p^* Zp的任意一个生成元。
根据欧拉定理, g ϕ ( p − 1 ) ≡ ( m o d p ) g^{\phi(p-1)}\equiv\pmod{p} gϕ(p1)(modp)
g ≡ x 2 ( m o d p ) g\equiv x_2\pmod{p} gx2(modp)
g p − 1 g ≡ x 2 ( m o d p ) g^{p-1}g\equiv x_2\pmod{p} gp1gx2(modp)
g p ≡ x 2 ( m o d p ) g_p\equiv x^2\pmod{p} gpx2(modp)
( p p 2 ) 2 ≡ x 2 ( m o d p ) (p^{\frac{p}{2}})^2\equiv x^2 \pmod{p} (p2p)2x2(modp)
根据p是奇素数, p 2 ∉ Z \frac{p}{2}\notin\mathbb{Z} 2p/Z,因此不存在 g ≡ x 2 ( m o d p ) g\equiv x^2\pmod{p} gx2(modp)
因此, Z p ∗ \mathbb{Z}_p^* Zp的所有生成元都是模p的二次非剩余。
原命题得证。

5.证明命题11.4
设p是奇素数,a,b ∈ Z \in\mathbb{Z} Z且不被p整除。则有:
1.如果 a ≡ b (mod p),则 ( a p ) (\frac{a}{p}) (pa)= ( b p ) (\frac{b}{p}) (pb)
2. ( a p ) (\frac{a}{p}) (pa) ( b p ) (\frac{b}{p}) (pb)= ( a b p ) (\frac{ab}{p}) (pab)
3. ( a 2 p ) (\frac{a^2}{p}) (pa2)=1。

证:
证明1.:
a a a Q R \mathbf{QR} QR时, a ≡ b ≡ x 2 ( m o d p ) a\equiv b\equiv x^2\pmod{p} abx2(modp),因此 b b b Q R \mathbf{QR} QR ( a p ) (\frac{a}{p}) (pa)= ( b p ) (\frac{b}{p}) (pb)
a a a Q N R \mathbf{QNR} QNR时, a ≡ b ≢ x 2 ( m o d p ) a\equiv b\not\equiv x^2\pmod{p} abx2(modp),因此 b b b Q N R \mathbf{QNR} QNR
原命题得证。

证明2.:
a , b a,b a,b Q R \mathbf{QR} QR时,ab= Q R \mathbf{QR} QR × \times × Q R \mathbf{QR} QR= Q R \mathbf{QR} QR,因此 ( a p ) (\frac{a}{p}) (pa) ( b p ) (\frac{b}{p}) (pb)= ( a b p ) (\frac{ab}{p}) (pab)
a , b a,b a,b一个为 Q R \mathbf{QR} QR一个为 Q N R \mathbf{QNR} QNR时,ab= Q R \mathbf{QR} QR × \times × Q N R \mathbf{QNR} QNR= Q N R \mathbf{QNR} QNR或ab= Q N R \mathbf{QNR} QNR × \times × Q R \mathbf{QR} QR= Q N R \mathbf{QNR} QNR,因此 ( a p ) (\frac{a}{p}) (pa) ( b p ) (\frac{b}{p}) (pb)= ( a b p ) (\frac{ab}{p}) (pab)
a , b a,b a,b Q N R \mathbf{QNR} QNR时,ab= Q N R \mathbf{QNR} QNR × \times × Q N R \mathbf{QNR} QNR= Q N R \mathbf{QNR} QNR,因此 ( a p ) (\frac{a}{p}) (pa) ( b p ) (\frac{b}{p}) (pb)= ( a b p ) (\frac{ab}{p}) (pab)

证明3.:
因为 a ∈ Z a\in\mathbb{Z} aZ,所以 a 2 a^2 a2 Q R \mathbf{QR} QR,因此 ( a 2 p ) (\frac{a^2}{p}) (pa2)=1。

综上,原命题得证。

6.给出推论11.1的完整证明。
在这里插入图片描述

证:
p ≡ 1 ( m o d 4 ) p\equiv1\pmod{4} p1(mod4)时,设p=4k+1,其中k为整数。
根据欧拉定理, ( − 1 p ) ≡ ( − 1 ) p − 1 2 = ( − 1 ) 4 k 2 = ( − 1 ) 2 k = 1 ( m o d p ) (\frac{-1}{p})\equiv(-1)^{\frac{p-1}{2}}=(-1)^{\frac{4k}{2}}=(-1)^{2k}=1\pmod{p} (p1)(1)2p1=(1)24k=(1)2k=1(modp)

p ≡ − 1 ( m o d 4 ) p\equiv-1\pmod{4} p1(mod4)时,设p=4k-1,其中k为整数。
根据欧拉定理, ( − 1 p ) ≡ ( − 1 ) p − 1 2 = ( − 1 ) 4 k − 2 2 = ( − 1 ) 2 k − 1 = − 1 ( m o d p ) (\frac{-1}{p})\equiv(-1)^{\frac{p-1}{2}}=(-1)^{\frac{4k-2}{2}}=(-1)^{2k-1}=-1\pmod{p} (p1)(1)2p1=(1)24k2=(1)2k1=1(modp)

综上,原命题得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值