CINTA:同构,同态与商群

3.如果 H \mathbb{H} H 1 _1 1 H \mathbb{H} H 2 _2 2是群 G \mathbb{G} G的正规子群,证明 H \mathbb{H} H 1 _1 1 H \mathbb{H} H 2 _2 2也是群 G \mathbb{G} G的正规子群。

证:
根据正规子群的定义,对 ∀ g ∈ G \forall g\in\mathbb{G} gG,有g H 1 \mathbb{H}_1 H1= H 1 \mathbb{H}_1 H1g,g H 2 \mathbb{H}_2 H2= H 2 \mathbb{H}_2 H2g。即对于任意g ∈ \in G \mathbb{G} G和h 1 _1 1 ∈ \in H 1 \mathbb{H}_1 H1,h 2 _2 2 ∈ H 2 \in\mathbb{H_2} H2,存在h 1 ′ _1' 1 ∈ \in H 1 \mathbb{H}_1 H1,h 2 ′ _2' 2 ∈ H 2 \in\mathbb{H_2} H2使得gh 1 _1 1=h 1 ′ _1' 1g,gh 2 _2 2=h 2 ′ _2' 2g。
H \mathbb{H} H 1 _1 1 H \mathbb{H} H 2 _2 2= { \lbrace {h 1 _1 1h 2 _2 2,h 1 _1 1 ∈ \in H 1 \mathbb{H}_1 H1,h 2 _2 2 ∈ \in H 2 \mathbb{H}_2 H2 } \rbrace }
g H \mathbb{H} H 1 _1 1 H \mathbb{H} H 2 _2 2= { \lbrace {gh 1 _1 1h 2 _2 2,h 1 _1 1 ∈ \in H 1 \mathbb{H}_1 H1,h 2 _2 2 ∈ \in H 2 \mathbb{H}_2 H2,g ∈ G \in\mathbb{G} G } \rbrace }
H \mathbb{H} H 1 _1 1 H \mathbb{H} H 2 _2 2g= { \lbrace {h 1 _1 1h 2 _2 2g,h 1 _1 1 ∈ \in H 1 \mathbb{H}_1 H1,h 2 _2 2 ∈ \in H 2 \mathbb{H}_2 H2,g ∈ G \in\mathbb{G} G } \rbrace }
对于任意g ∈ \in G \mathbb{G} G和h 1 _1 1 ∈ \in H 1 \mathbb{H}_1 H1,h 2 _2 2 ∈ H 2 \in\mathbb{H_2} H2,存在h 1 ′ _1' 1 ∈ \in H 1 \mathbb{H}_1 H1,h 2 ′ _2' 2 ∈ H 2 \in\mathbb{H_2} H2,使得:
gh 1 _1 1h 2 _2 2=h 1 ′ _1' 1gh 2 _2 2=h 1 ′ _1' 1h 2 ′ _2' 2g,
h 1 _1 1h 2 _2 2g=h 1 _1 1gh 2 ′ _2' 2=gh 1 ′ _1' 1h 2 ′ _2' 2
满足g H \mathbb{H} H 1 _1 1 H \mathbb{H} H= H \mathbb{H} H 1 _1 1 H \mathbb{H} Hg, H \mathbb{H} H 1 _1 1 H \mathbb{H} H是正规子群。
原命题得证。

5.定义映射 ϕ \phi ϕ: G \mathbb{G} G → \rightarrow G \mathbb{G} G为g → \rightarrow g 2 ^2 2请证明 ϕ \phi ϕ是一种群同态当且仅当 G \mathbb{G} G是阿贝尔群。

证:
证明充分性:
由于 ϕ \phi ϕ是一种群同态,则 ∀ \forall a,b ∈ \in G \mathbb{G} G ϕ \phi ϕ(ab)= ϕ \phi ϕ(a) ϕ \phi ϕ(b),因此(ab) 2 ^2 2=a 2 ^2 2b 2 ^2 2
abab=a 2 ^2 2b 2 ^2 2=aabb,满足阿贝尔群的定义。
充分性得证。

证明必要性:
ϕ \phi ϕ(a)=a 2 ^2 2 ϕ \phi ϕ(b)=b 2 ^2 2
ϕ \phi ϕ(a) ϕ \phi ϕ(b)=a 2 ^2 2b 2 ^2 2=aabb,由于 G \mathbb{G} G是阿贝尔群,原式=(ab)(ab)=(ab) 2 ^2 2= ϕ \phi ϕ(ab), ϕ \phi ϕ满足群同态。
必要性得证。

7.证明:如果 H \mathbb{H} H是群 G \mathbb{G} G上指标为 2 的子群,则 H \mathbb{H} H G \mathbb{G} G的正规子群。

证:
根据题意,[ G \mathbb{G} G: H \mathbb{H} H]=2。
根据定理8.1,由于[ G \mathbb{G} G: H \mathbb{H} H]=2, H \mathbb{H} H G \mathbb{G} G上有2个不同的左陪集。假设这两个左陪集分别是g 1 _1 1 H \mathbb{H} H和g 2 _2 2 H \mathbb{H} H,其中g 1 _1 1,g 2 _2 2 ∈ \in G \mathbb{G} G
由于 H \mathbb{H} H是群 G \mathbb{G} G的子群,因此 H \mathbb{H} H满足群公理,根据封闭性,则 ∀ g ∈ H \forall g \in\mathbb{H} gH,gh ∈ H \in\mathbb{H} H
若存在两个不同的左陪集,那么 g 1 , g 2 g_1,g_2 g1,g2一定是其中一个在 H \mathbb{H} H中,另一个不在 H \mathbb{H} H中。不妨设 g 1 ∈ H g_1\in\mathbb{H} g1H, g 2 ∉ H g_2\notin\mathbb{H} g2/H

①若g ∈ \in H \mathbb{H} H
由于 H \mathbb{H} H是群 G \mathbb{G} G的子群,因此 H \mathbb{H} H满足群公理,根据封闭性,则 ∀ g ∈ H \forall g \in\mathbb{H} gH,gh ∈ H \in\mathbb{H} H且hg ∈ H \in\mathbb{H} H
根据陪集的定义,
g H \mathbb{H} H= { g h : h ∈ H } \lbrace gh:h\in\mathbb{H}\rbrace {gh:hH}
H \mathbb{H} Hg= { h g : h ∈ H } \lbrace hg:h\in\mathbb{H}\rbrace {hg:hH}
由于gh ∈ H \in\mathbb{H} H且hg ∈ H \in\mathbb{H} H,则显然,g H \mathbb{H} H= H \mathbb{H} H= H \mathbb{H} Hg。

②若g ∉ \notin / H \mathbb{H} H
根据封闭性,gh ∈ G \in\mathbb{G} G且hg ∈ G \in\mathbb{G} G,但gh ∉ H \notin\mathbb{H} /H且hg ∉ H \notin\mathbb{H} /H。那么gh ∈ F \in\mathbb{F} F且hg ∈ F \in\mathbb{F} F F \mathbb{F} F为在 G \mathbb{G} G但不在 H \mathbb{H} H中的所有元素的集合,即 G \mathbb{G} G的另一个子群。
根据陪集的定义,
g H \mathbb{H} H= { g h : h ∈ H } \lbrace gh:h\in\mathbb{H}\rbrace {gh:hH}
H \mathbb{H} Hg= { h g : h ∈ H } \lbrace hg:h\in\mathbb{H}\rbrace {hg:hH}
由于gh ∈ F \in\mathbb{F} F且hg ∈ F \in\mathbb{F} F,则显然g H \mathbb{H} H= F \mathbb{F} F= H \mathbb{H} Hg。

以上证明同第八章习题4的证明,由此证得g H \mathbb{H} H= H \mathbb{H} Hg,则根据正规子群的定义, H \mathbb{H} H G \mathbb{G} G的正规子群。
原命题得证。

9.给定任意群 G \mathbb{G} G H \mathbb{H} H是群 G \mathbb{G} G的正规子群。请证明,如果群 G \mathbb{G} G是循环群,则商群 G \mathbb{G} G / / / H \mathbb{H} H也是循环群。

证:
由于 H \mathbb{H} H是群 G \mathbb{G} G的正规子群, ∀ g ∈ G \forall g\in\mathbb{G} gG,有g H \mathbb{H} H= H \mathbb{H} Hg,g H \mathbb{H} Hg − 1 ^{-1} 1= H \mathbb{H} H
G \mathbb{G} G / / / H \mathbb{H} H= { g H : g ∈ G } \lbrace g\mathbb{H}:g\in\mathbb{G}\rbrace {gH:gG}
设g为群 G \mathbb{G} G的一个生成元,设f=g k ^k k,其中k为整数,则有 f H f\mathbb{H} fH=g k ^k k H \mathbb{H} H
由于 H \mathbb{H} H是群 G \mathbb{G} G的正规子群,原式=(g H \mathbb{H} H) k ^k k,因此,g H \mathbb{H} H G \mathbb{G} G / / / H \mathbb{H} H的生成元, G \mathbb{G} G / / / H \mathbb{H} H是循环群。
原命题得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值