考研机试 连通图

文章介绍了如何利用并查集数据结构来解决判定给定无向图中所有顶点是否连通的问题,通过初始化、查找和合并操作来实现判断。
摘要由CSDN通过智能技术生成

描述
给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。
输入描述:
每组数据的第一行是两个整数 n 和 m(0<=n<=1000)。n 表示图的顶点数目,m 表示图中边的数目。随后有 m 行数据,每行有两个值 x 和 y(0<x, y <=n),表示顶点 x 和 y 相连,顶点的编号从 1 开始计算。输入不保证这些边是否重复。
输出描述:
对于每组输入数据,如果所有顶点都是连通的,输出"YES",否则输出"NO"。

#include<iostream>
using namespace std;
int father[1010];
void InitDisjointSet(int n) {
    for (int i = 1; i <=n; ++i) {
        father[i] = i;
    }
}
int FindDisjointSet(int u) {
    if (father[u] == u) {
        return u;
    } else {
        father[u] = FindDisjointSet(father[u]);
        return father[u];
    }
}
void  UnionDisjointSet(int u, int v) {
    int uroot = FindDisjointSet(u);
    int vroot = FindDisjointSet(v);
    if (vroot != uroot) {
        father[vroot] = uroot;
    }
}
int main() {
    int n, m, u, v;
    while (scanf("%d%d",&n,&m)!=EOF) {
        if(n==0){
            break;
        }
        InitDisjointSet(n);
        for (int i = 0; i < m; ++i) {
            scanf("%d%d", &u, &v);
            UnionDisjointSet(u, v);
        }int flag=1;
        int f= FindDisjointSet(1);
        for(int i=1;i<=n;++i){
            if(FindDisjointSet(i)!=f){
                flag=0;
                break;
            }
        }
        if (flag ) {
            printf("YES\n");
        } else {
            printf("NO\n");
        }
    }


}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值