求出数列前20项的和,1、2/1,3/2,4/3,5/4,6/5.......

#include <stdio.h>

//求出数列前20项的和,1、2/1,3/2,4/3,5/4,6/5.......

int main() {
	//分子 分母
	int a = 2;
	int b = 1;

	double sum = 1; // 和

//sum初始为1  则从第二项起
	for (int i = 2; i <= 20; i++) {
		sum = sum + (double)a / b;
		a += 1;
		b += 1;
	}
	printf("%.2lf", sum);
}

### 回答1: 求1-2/3 3/5-4/7的前n: 首先,我们需要将这两个列分别求出前n,然后再将它们相减即可得到答案。 1-2/3的前n为: 1-2/3+3/5-4/7+5/9-6/11+...+(-1)^(n+1)*n/(2n-1) 3/5-4/7的前n为: 3/5-4/7+5/9-6/11+7/13-8/15+...+(-1)^(n+1)*(2n-1)/(4n^2-1) 将它们相减,得到: (1-2/3+3/5-4/7+5/9-6/11+...+(-1)^(n+1)*n/(2n-1)) - (3/5-4/7+5/9-6/11+7/13-8/15+...+(-1)^(n+1)*(2n-1)/(4n^2-1)) 化简后,得到: (4n^2-1)/(4n^2+2n-3) 因此,求1-2/3 3/5-4/7的前n的公式为: (4n^2-1)/(4n^2+2n-3) ### 回答2: 要求求解这个列的前n,首先我们可以将每一都进行通分,得到: 1-2/3 = 3/3 - 2/3 = 1/3 3/5-4/7 可以将两个分的分母取最小公倍35,分别乘上相应的倍得到21/35 - 20/35 = 1/35 所以原先的列可以简化为: 1/3 + 1/35 + .... 当进行通分后,列的公共分母为105,所以每一的分母都是105。因此,下一步我们需要将每一的分子化为105的倍。 1/3 = 35/105 1/35 = 3/105 将其代入列中得: 35/105 + 3/105 + ... 可以看出列的公共分母为105,所以前n为: (35+3+...) / 105 = (1+2+3+...+n) / 105 所以答案为 (1+2+3+...+n) / 105. ### 回答3: 要求求解前n,我们需要先计算出每一值,然后将它们相加。 首先对于1-2/3,可以将它们表示为分形式,即3/3-2/3=1/3。所以这里的每一都是1/3。 然后对于3/5-4/7,我们需要找到它们的最小公倍作为通分的分母。最小公倍为35。将3/54/7通分得到21/35-20/35=1/35。 现在我们已经得到了前两个列的每一,分别是1/31/35。 接下来,我们将计算这些列的前n。 1-2/3的前n为: 1/3 + 1/3 + ... + 1/3 (共n) 由于每一都是1/3,所以可以简化为: n * 1/3 = n/3 3/5-4/7的前n为: 1/35 + 1/35 + ... + 1/35(共n) 同样可以简化为: n * 1/35 = n/35 所以最终的答案为: 前n = n/3 + n/35 这样,我们就得到了求解前n的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值