一次性掌握原码、反码、补码及其运算,骚年 你确定不来看看?

前言

相信各位小伙伴们对于原码、反码和补码都有一定了解,这篇文章我想系统的讨论一下,以及他们之间的转换关系、运算等。如果本文对你有帮助,恳请大家点赞👍收藏⭐️,谢谢大家!😃

在学习原码, 反码和补码之前, 需要先了解机器数真值的概念.

一.机器数和真值

🔥 机器数

一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。

那么,这里的 00000011 和 10000011 就是机器数。

🔥 真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

                                ✨✨✨✨✨✨✨✨✨✨✨✨

了解了机器数和真值的概念后,让我们继续研究原码、反码以及补码。而要想理解补码和为什么会出现补码,要先知道他们各自的含义。

二.原码、反码、补码概念

原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值.
比如如果是8位二进制:
0 : +
1 : -

[+1]= 0000 0001
[-1]= 1000 0001

由于第一位是符号位,那么八位二进制数的取值范围就可以表示为
[1111 1111 , 0111 1111]

即:
[-127 , 127]
原码表示数字的规则最简单、最易理解,与数学二进制表示数字方法几乎一样。

反码

正数和负数的反码表示方法不同:
正数的反码是其本身
负数的反码是在其原码的基础上, 符号位不变,其余各个位取反,也就是就是0变1,1变0。

[+1] = [00000001]= [00000001][-1] = [10000001]= [11111110]

补码

同样补码的表示方法也分两种:

正数的补码就是其本身
负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]= [00000001]= [00000001][-1] = [10000001]= [11111110]= [11111111]
综上所述:

在这里插入图片描述

三. 为何要使用原码, 反码和补码

相信大家初次了解原码、反码和补码时,一定有跟我一样的想法:既然原码符合人脑思维、方便简单,为什么还要使
用相对复杂的反码和补码呢?

想知道这个问题的答案,我们不妨先来看看当计算机来处理数字的加减法时的情况:

🍒使用原码表示数字

假设计算机中现在只能使用原码

加法:
1 + 1 = [0000 0001]+ [0000 0001]= [0000 0010] = 2
减法:
1 - 1 = 1 + (-1) = [0000 0001]+ [1000 0001]= [1000 0010]= -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不

使用原码表示一个数。

🍒使用反码表示数字

那么,如果在数字运算时,不对数字的符号位进行操作,是不是就可以解决问题呢?

于是,基于这种思考,科学家们发明了反码来表示数字。

1 - 1 = 1 + (-1) = [0000 0001]+ [1000 0001]= [0000 0001]+ [1111 1110]= [1111 1111]= [1000 0000]= -0

但是,很快人们发现,反码也不能完美处理所有情况:用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在0这个特殊的数值上。虽然人们理解上+0和-0是一样的,但是0带符号是没有任何意义的,而且会有[0000 0000]原和[1000 0000]原两个编码表示0。

🍒使用补码表示数字

原码、反码都不行,于是反码作为可以弥补以上问题的特殊表示方式应运而生:

1-1 = 1 + (-1) = [0000 0001]+ [1000 0001]= [0000 0001]+ [1111 1111]= [0000 0000]=[0000 0000]= 0

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128.

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128.

(-1) + (-127) = [1000 0001]+ [1111 1111]= [1111 1111]+ [1000 0001]= [1000 0000]=-128

但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以我们也就很容易就可以理解为什么编程中的int类型数值的范围是 [-2^31, 2^31-1]因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.

💎深入探究一下其原理

在之前我们研究反码、补码的运算效果时,都采用了将减法化为加法的方式,同理,计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?

🍇利用钟表来研究

将钟表想象成是一个1位的12进制数.
如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:

1.往回拨2个小时: 6 - 2 = 4

2.往前拨10个小时: (6 + 10) % 12 = 4

3.往前拨10+12=22个小时: (6+22)%mod 12 =4

所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数.

这里要使用到一个数学中的概念: 同余

🍇同余的概念

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余
记作 a ≡ b (% m)
读作 a 与 b 关于模 m 同余。

举例说明:

4 % 12 = 4
16 % 12 = 4
28 % 12 = 4

所以4, 16, 28关于模 12 同余.

🍇关于负数取模

正数进行mod运算是很简单的. 但是负数呢?

下面是关于mod运算的数学定义:

clip_image001

上面是截图, "取下界"符号找不到如何输入(word中粘贴过来后乱码). 下面是使用"L"和"J"替换上图的"取下界"符号:

x mod y = x - y L x / y J

上面公式的意思是:

x mod y等于 x 减去 y 乘上 x与y的商的下界.

以 -3 mod 2 举例:
-3 mod 2
= -3 - 2xL -3/2 J
= -3 - 2xL-1.5J
= -3 - 2x(-2)
= -3 + 4 
= 1

所以:

(-2) mod 12 = 12-2=10
(-4) mod 12 = 12-4 = 8
(-5) mod 12 = 12 - 5 = 7

开始证明
再回到时钟的问题上:

回拨2小时 = 前拨10小时
回拨4小时 = 前拨8小时
回拨5小时= 前拨7小时

注意, 这里发现的规律 结合上面学到的同余的概念.实际上:

(-2) mod 12 = 10
10 mod 12 = 10
-2与10是同余的.

(-4) mod 12 = 8
8 mod 12 = 8
-4与8是同余的.

距离成功越来越近了. 要实现用正数替代负数, 只需要运用同余数的两个定理:

🍊反身性:

a ≡ a (mod m)

🍊线性运算定理:

如果a ≡ b (mod m),c ≡ d (mod m) 
那么:
(1)a ± c ≡ b ± d (mod m)
(2)a * c ≡ b * d (mod m)

所以:

7 ≡ 7 (mod 12)
(-2) ≡ 10 (mod 12)
7 -2 ≡ 7 + 10 (mod 12)

现在我们为一个负数, 找到了它的正数同余数. 但是并不是7-2 = 7+10, 而是 7 -2 ≡ 7 + 10 (mod 12) , 即计算结果的余数相等.

接下来回到二进制的问题上, 看一下: 2-1=1的问题.

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原= [0000 0010]反 + [1111 1110]反

先到这一步, -1的反码表示是1111 1110. 如果这里将[1111 1110]认为是原码, 则[1111 1110]原 = -126, 这里将符号位除去, 即认为是126.

发现有如下规律:

(-1) mod 127 = 126
126 mod 127 = 126

即:

(-1) ≡ 126 (mod 127)
2-1 ≡ 2+126 (mod 127)

2-1 与 2+126的余数结果是相同的! 而这个余数, 正式我们的期望的计算结果: 2-1=1

所以说一个数的反码, 实际上是这个数对于一个膜的同余数. 而这个膜并不是我们的二进制, 而是所能表示的最大值! 这就和钟表一样, 转了一圈后总能找到在可表示范围内的一个正确的数值!

而2+126很显然相当于钟表转过了一轮, 而因为符号位是参与计算的, 正好和溢出的最高位形成正确的运算结果.

既然反码可以将减法变成加法, 那么现在计算机使用的补码呢? 为什么在反码的基础上加1, 还能得到正确的结果?

2-1=2+(-1) = [0000 0010]原 + [1000 0001]原 = [0000 0010]补 + [1111 1111]补

如果把[1111 1111]当成原码, 去除符号位, 则:

[0111 1111]原 = 127

其实, 在反码的基础上+1, 只是相当于增加了膜的值:

(-1) mod 128 = 127
127 mod 128 = 127
2-1 ≡ 2+127 (mod 128)

此时, 表盘相当于每128个刻度转一轮. 所以用补码表示的运算结果最小值和最大值应该是[-128, 128].

但是由于0的特殊情况, 没有办法表示128, 所以补码的取值范围是[-128, 127]

(注:本文因为涉及到数学原理性的问题,尽管我查阅相关文章,但笔者知识有限,请各位谨慎、仅作参考,如出现错误,恳请大家多多斧正,万分感谢🙏。)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值