- 博客(21)
- 收藏
- 关注
原创 第一章,强化学习:
就是期望的reward。即每个行为的reward和每个行为的概率相乘,然后相加。神经网络输出的是不同的action的概率,最高的就是这一步的action。那如何选择最好的actor呢?使用的方法就是gradient ascent。但是这样不够完善,飞机可能在原地一直开火,如何使得太低的增加?因为行为和游戏具有随机性,则这个R是不确定的。式子的理念就是:在采取的行为是积极的时候,就提升。作为R的期望值,评估了行为向量的好坏。求reward最大值时候的值。
2023-06-26 20:38:04 258
原创 第七章:支持向量机SVM:1. sklearn.svm.SVC 1.1 代码 2.核函数 3.软间隔
这个时候,我们的决策边界就不是单纯地寻求最大边际了,因为对于软间隔地数据来说,边际越大被分错的样本也就会越多,因此我们需要找出一个"最大边际”与”被分错的样本数量”之间的平衡。参数C用于权衡“训练样本的正确分类“与”决策函数的边际最大化“两个不可同时完成的目标,希望找出一个平衡点来让模型的效果最佳。例如,svm将两类分开。这里的w,x均为向量。主要是寻找决策边界。将平面分开,分出的点。
2023-06-19 17:16:35 305
原创 第六章、聚类算法K-means:一、k-means :无监督分类 1.sklearn中的聚类算法 1.1 sklearn.cluster.K-means 1.2 超参数n_clusters=inert
聚类是一种无监督学习方法,其目标是将数据样本分成不同的组,使得同一组内的样本彼此相似,而不同组之间的样本差异较大。分类是一种有监督学习方法,它使用已有的标签或类别信息来训练模型,并预测新的未知数据点所属的类别。除了轮廓系数是最常用的,还有卡林斯基-哈拉巴斯指数(Calinski-Harabaz ndex,简称CHI,也被称为方差比标准),戴维斯-布尔丁指数 (Davies-Bouldin) 以及权变阵(Contingency Matrix) 可以使用。n表示特征数目,例如,二维数据的x,y,则n=2;
2023-06-17 22:14:04 584
原创 第五章、逻辑回归:一、为什么需要逻辑回归? 1. sklearn中的逻辑回归 1.1 LogisticRegression
我们使用“损失函数"这个评估指标,**来衡量参数p的优劣,即这一组参数能否使模型在训练集上表现优异。**如果用一组参数建模后,模型在训练集上表现良好,那我们就说模型表现的规律与训练集数据的规律一致,拟合过程中的损失很小,损失函数的值很小,这一组参数就优秀;相反,如果模型在训练集上表现糟糕,损失函数就会很大,模型就训练不足,效果较差,这一组参数也就比较差。即是说,我们在求解参数p时,追求损失函数最小,让模型在训练数据上的拟合效果最优,即预测准确率尽量靠近100%横坐标是c的值,由图可得,在该图l2较好。
2023-06-17 16:14:04 216
原创 第四章:降维处理:pca和svd 一、pca 1.pca降维是如何实现的? 2.代码 二、SVD 1.svd 三、降维和特征选择都是特征工程技术,有什么区别?
而降维算法,是将已存在的特征进行压缩,降维完毕后的特征不是原本的特征矩阵中的任何一个特征,而是通过某些方式组合起来的新特征。通常来说,**在新的特征矩阵生成之前,我们无法知晓降维算法们都建立了怎样的新特征向量,新特征矩阵生成之后也不具有可读性,**我们无法判断新特征矩阵的特征是从原数据中的什么特征组合而来,新特征虽然带有原始数据的信息,却已经不是原数据上代表着的含义了。PCA和SVD是两种不同的降维算法,但他们都遵从上面的过程来实现降维,只是两种算法中矩阵分解的方法不同,信息量的衡量指标不同罢了。
2023-06-16 15:42:37 146
原创 第三章:数据预处理和特征工程:一、预处理 1.数据无量纲化 1.1 归一化 1.2 数据标准化 2.缺失值的处理 3.处理分类型特征 独热编码 4.处理连续型特征 分为多个
normalization :数据减去最小值除以最大差异。不止最后一列可以改变,其他非数字都可以改变。数据的无量纲化包括中心化、缩放处理。如何用numpy实现归一化?40岁以上是1,40以下是0。例如,老人小孩0,中年人1。代码如下:(3种方式)
2023-06-15 22:07:41 399 2
原创 第二章:随机森林: 一、集成算法 1.随机数建模基本流程 2.重要参数 3.建模
多个评估器的建模结果汇总得到比单个模型更好的回归或者分类表现。组成集成评估器的模型有三种:装袋bagging、提升boosting、stacking。提升法的代表模型:adaboost随机森林的基分类器就是决策树。如何分支:分类树的不纯度:gini系数或者是信息熵,回归树的不纯度:MSE均方差。
2023-06-13 15:06:40 138
原创 deep learning 花书 第一章:激活函数 前馈神经网络
深度学习是一种机器学习。深度学习使用深度神经网络,这些网络由多个神经网络层组成,每个层都包含许多神经元。深度神经网络的层数和参数量通常很大,使其能够处理更复杂的任务和大规模数据。一般用于二分类,但是饱和时,梯度会消失;f(x,W)=Wx+b ,训练改变w,使损失函数L的值最小。从输入 -》到输出的映射 f(x,W)。数据决定了模型的上限,预处理和特征提取是核心。但是当x<0时无法学习。使用了非线性的激活函数。深度学习解决了如何去提取特征的问题。解决了relu的问题。
2023-06-12 15:38:33 137
原创 深度学习 语句翻译
machine translation包括两个步骤:绿色的encoding,紫色的deconding。声波图 -》 注意力机制网络(双向的LSTM)语言模型和翻译模型。绿色将输入的语句编码并记忆,然后输入紫色。将概率相乘改成log概率相乘。
2023-06-08 21:26:50 60
原创 embedding 深度学习词嵌入,词预测,情绪分析
将它们的embedding放入隐藏层训练后,最后进入10k的softmax层。谁的概率更高,则更可能是谁。(softmax最大值对应的词)softmax的输出时10k维。average为计算4个300维度的词向量的相加后平均值,依旧是300维。如果一个句子的长度太长,可以选择固定的窗口,使得这个词的前后固定词语数量作为它的上下文来推测。(如果u,t相似时,u,t的内积将会最大,即sim=1,而cos在角为0度时为1,90度时为0.)选择一个词语i在预测词语j出现的频率为xij。随机选择一个词语作为上下文。
2023-06-07 21:37:50 284
原创 隐私保护和数据安全:区块链的隐私问题、零钞:基于zkSNARK的完美混币池、Hawk:保护合约数据私密性、Coco框架、Baby Zoe
第十章文章目录第十章一、区块链的隐私问题1、化名和匿名2、去匿名攻击:交易表分析二、零钞:基于zkSNARK的完美混币池1、零知识证明2、零钞的运行原理三、Hawk:保护合约数据私密性四、Coco框架1、TEE环境简介五、以太坊隐私保护技术路线:Baby Zoe一、区块链的隐私问题1、化名和匿名所谓化名就是我们在网络中使用的一个与真实身份无关的身份,在比特币或者以太坊紫彤的交易中,使用者使用公钥散列值作为交易地址。因此区块链中的交易具有化名性。匿名:指的是具备无关联性(unlinkability
2022-05-01 14:25:41 2621
原创 以太坊性能优化:分片技术、雷电网络、Casper-下一代以太坊共识协议
第九章文章目录第九章一、分片技术二、雷电网络三、Casper-下一代以太坊共识协议总结一、分片技术分片是为了解决所有区块链面临的扩展性问题,将在以太坊2.0实现。总体来说,分片的作用是让以太坊从网络上的每个节点都要验证每一笔交易的模式,转型到只需要小部分的节点来验证每一笔交易的模式,只要验证每笔交易的节点足够多,那么整个系统仍然是高度安全的。在分片模式下的区块链中,一个区块必须包含每一个分片的归类头,当具有如下情形时,该块才有效。每个归类中给出的前一状态根必须与相关联分片的当前结果根匹配归类
2022-04-28 15:42:06 2039
原创 以太坊数据查询与分析工具:以太坊浏览器Etherscan、ETHERQL
第八章文章目录第八章一、以太坊浏览器Etherscan1、Ethersan的基本功能2、其他功能3、API4、ENS域名查询二、ETHERQL1、同步管理器2、处理程序链3、持久化框架4、开发者接口5、实现一、以太坊浏览器Etherscanetherscan是一个在以太坊以及去中心化智能合约上的区块浏览器和分析平台。在其中我们可以很方便的查找、认证和检验以太坊区块链上发生的所有交易,包括智能合约的创建、调用、代币交易等。旨在辅助以增强区块链的透明性。1、Ethersan的基本功能交易查询:在B
2022-04-27 15:06:33 5058 2
原创 以太坊数字资产的发行和流通:以太坊上的数字资产定义、ERC 20代币合约标准、ERC 20标准接口、ERC 721代币合约标准、
第七章文章目录第七章一、以太坊上的数字资产定义二、发行和流通三、ERC 20代币合约标准1、ERC 20标准接口2、现有的ERC 20标准代币三、ERC 721代币合约标准1、标准定义2、CryptoKitties DAPP一、以太坊上的数字资产定义以太坊设计的目标就是让各种数字资产能以智能合约的形式运行在以太坊虚拟机上。目前,众多智能合约中最广泛应用的是代币合约(Token Contract)。是负责管理账户以及其拥有的代币的智能合约,实质可以理解为一张账户地址和对应账户代币余额的映射表。即:
2022-04-27 14:10:41 2697
原创 编写和部署智能合约:智能合约工具、remix、Truffle
第五章文章目录第五章一、智能合约工具二、remix三、Truffle总结一、智能合约工具智能合约的编译环境就是solidity的编译环境,智能合约的执行环境就是EVM。二、remix对于底层调用address.call()返回bool类型,0是失败,1是成功。调用方无法获得被调用函数的返回值。address.delegatecall() 通过调用别的智能合约中的方法,修改自己的智能合约的状态。即使没有某一变量也不会造成调用执行失败,EVM会在一个未定义的位置存储一个数据。三、Truffl
2022-04-22 14:31:49 410
原创 智能合约与以太坊虚拟机:智能合约、solidity语言
第四章文章目录第四章一、智能合约1、存储方式2、指令集和消息调用3、日志二、solidity语言。1、类型转换2、运算符3、区块和交易属性:4、控制结构语句5、函数6、constant函数和fallback函数7、函数修改器8、异常处理9、事件和日志10、智能合约的继承总结一、智能合约智能合约的行为由合约代码控制,智能合约的账户存储保存了合约的状态。智能合约的代码运行在以太坊虚拟机中,以太坊虚拟机是以太坊协议的核心。从存储上来看智能合约包括了商品的信息以及所有的交易记录;从功能上看,该合约包含
2022-04-21 19:56:43 4203
原创 不同类型的以太坊区块链及其部署:区块链类型:公有链,联盟链,私有链、安装部署以太坊。
第三章文章目录第三章一、区块链类型二、使用步骤1.引入库2.读入数据总结一、区块链类型示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport warningswarnings.filterwarnings('ignor
2022-04-21 16:54:37 5162
原创 以太坊:新一代的区块链平台:一致性协议的设计包括什么、以太坊、去中心化应用DAPP、以太坊的主流开源项目
理解区块链一、一致性协议的设计包括什么?二、以太坊三、去中心化应用DAPP四、以太坊的主流开源项目一、一致性协议的设计包括什么?安全,保证各个节点存储的数据能够达到共识有效的激励机制,给予一定的经济奖励,从而保证架构的稳定健康运行二、以太坊以太坊的核心是以太坊虚拟机(EVM)所谓智能合约就是一段EVM可执行的代码。以太坊区块链的好处:时间戳和溯源、数字资产的发行和流通、跨组织的数据共享三、去中心化应用DAPPDApp同样具有 去中心化、透明公开和激励机制、共识机制特点。共识机制
2022-04-18 19:10:12 218
原创 BTC-协议:中心化的数字货币的问题、去中心化
b站第四集目录b站第四集一、中心化的数字货币的问题?二、去中心化1.小型区块链2 比特币系统中的节点3 分布式的共识4 比特币的共识协议一、中心化的数字货币的问题?可复制,即:double spending attack(防范方法:验证货币的真实性的同时在大型数据库中记录目前的数字货币的持有者)二、去中心化1.小型区块链指针防止double spendingA给B转账:A要知道B的公钥(B的公钥可以经过一些转换成为B的地址)。所有节点均需要知道A的公钥。2 比特币系统中的节点
2022-04-18 16:04:41 930
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人