deepl learning
文章平均质量分 78
深度学习吴恩达和花书系列
qq_53982314
这个作者很懒,什么都没留下…
展开
-
deep learning 花书 第一章:激活函数 前馈神经网络
深度学习是一种机器学习。深度学习使用深度神经网络,这些网络由多个神经网络层组成,每个层都包含许多神经元。深度神经网络的层数和参数量通常很大,使其能够处理更复杂的任务和大规模数据。一般用于二分类,但是饱和时,梯度会消失;f(x,W)=Wx+b ,训练改变w,使损失函数L的值最小。从输入 -》到输出的映射 f(x,W)。数据决定了模型的上限,预处理和特征提取是核心。但是当x<0时无法学习。使用了非线性的激活函数。深度学习解决了如何去提取特征的问题。解决了relu的问题。原创 2023-06-12 15:38:33 · 138 阅读 · 0 评论 -
深度学习 语句翻译
machine translation包括两个步骤:绿色的encoding,紫色的deconding。声波图 -》 注意力机制网络(双向的LSTM)语言模型和翻译模型。绿色将输入的语句编码并记忆,然后输入紫色。将概率相乘改成log概率相乘。原创 2023-06-08 21:26:50 · 60 阅读 · 0 评论 -
embedding 深度学习词嵌入,词预测,情绪分析
将它们的embedding放入隐藏层训练后,最后进入10k的softmax层。谁的概率更高,则更可能是谁。(softmax最大值对应的词)softmax的输出时10k维。average为计算4个300维度的词向量的相加后平均值,依旧是300维。如果一个句子的长度太长,可以选择固定的窗口,使得这个词的前后固定词语数量作为它的上下文来推测。(如果u,t相似时,u,t的内积将会最大,即sim=1,而cos在角为0度时为1,90度时为0.)选择一个词语i在预测词语j出现的频率为xij。随机选择一个词语作为上下文。原创 2023-06-07 21:37:50 · 284 阅读 · 0 评论