深度学习损失函数——“dice_coeff”代码实现

Dice coefficient也被称为F1-score,是一种用于衡量两个集合相似度的指标,通常用于图像分割任务中。在医学图像分割中,Dice coefficient常用于衡量模型预测的分割掩码与真实标签之间的相似度。Dice coefficient越接近1,表示预测结果与真实标签越相似。

下面是用于计算Dice coefficient的代码实现:

def dice_coeff(pred, target):
    smooth = 1.

    # 将预测结果和真实标签转换为二值化的掩码
    pred = torch.sigmoid(pred).view(-1)
    target = target.view(-1)

    # 计算交集并集
    intersection = (pred * target).sum()
    union = pred.sum() + target.sum()

    # 计算Dice coefficient
    dice = (2. * intersection + smooth) / (union + smooth)

    return dice

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vous oublie@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值