第三次作业:卷积神经网络基础


一、视频学习

第一部分:卷积神经网络相关概念

概括

  • 卷积神经网络的应用:分类、检索、检测、分割;人脸识别、图像生成、智能驾驶。

  • 深度学习三部曲:搭建神经网络结构,提取特征;合适的损失函数;合适的优化参数;

  • 传统神经网络和卷积神经网络:
    使用传统神经网络:参数太多,会导致过拟合现象,泛化性能差
    卷积神经网络:局部关联;参数共享
    相同之处:层级结构

  • 卷积神经网络基本组成结构:卷积;池化;全连接

卷积

  • 一维卷积
    应用:信号处理,计算信号延迟累计
    滤波器(卷积核) f=[f1,f2,f3]长度为m
    信号序列 x=[x1,x2,x3,…]
    卷积:
    在这里插入图片描述

  • 二维卷积
    用于图像处理
    矩阵内积Y=WX+b
    在这里插入图片描述

  • 卷积的具体操作举例
    在这里插入图片描述
    输入有多个channel时,如(R,G,B),使用两个三维权重矩阵
    在这里插入图片描述
    大小不匹配时,进行零填充(padding)
    在这里插入图片描述
    在这里插入图片描述

  • 输出特征图的大小的计算
    行列数=(N+padding*2-F)/stride+1
    N–输入大小
    F–卷积核大小
    stride–步长
    padding–填充大小

  • 深度的概念;
    depth/channel=filter个数

  • 输出=特征图大小*深度

  • 参数量=(单个filter大小+1)×filter个数
    在这里插入图片描述

  • 卷积的可视化理解:不同的卷积核关注不同的特征

池化

  • 相当于缩放,参数量0,有filter和stride
  • 作用:保留主要特征,减少参数量和计算量,防止过拟合,提高模型泛化能力
  • 位于卷积层与卷积层间、全连接层与全连接层之间
  • 常用方法:
    最大值池化(分类)
    平均值池化
    在这里插入图片描述

全连接

一般放在卷积神经网络的尾部,参数量大

小结

第二部分:卷积神经网络典型结构

发展历程

AlexNet

在这里插入图片描述
在这里插入图片描述

  • 影响最大的是收敛速度
  • 总结用到的一些优化方法:
    1.ReLU激活函数
    2.DropOut(随机失活):从减少参数量方面考虑,训练时每次随机关闭一些神经元以降低参数量,整合时使用全部。
    3.水平翻转:增加样本量
    4.改变EGB通道强度:对rgb空间做高斯扰动。

VGG16

  • VGG的思想:增加深度,通过固定参数实现训练

GoogleNet

是模型结构的改进:除了类别输出层没有额外的全连接层

  • inception模块:通过多个卷积核增加特征多样性
    inceptionV2:降维
    inceptionV3:继续降维,裂变,用小的卷积核替代大的卷积核
    优点:降低参数量;增加了非线性激活函数(裂变)

ResNet

残差学习网络,深度152层而无梯度消失问题,适用于很深的网络。

  • 与传统卷积网络的差异
    结构比较:
    在这里插入图片描述
  • 传统结构:复合函数f(h…)求导,结果是乘积形式。
    残差block:f(h…)+x求导,结果为1+?的形式,解决了梯度消失问题。
  • 灵活性考虑极端情况:
    f(x)=0此时输出f(x)+x=x,可以自调节结构深度

疑问

1.为什么最大值池化更适用于分类问题?
2.filter和stride是如何选取的?

二、代码练习

(一)练习1 MNIST 数据集分类:构建简单的CNN对 mnist 数据集进行分类。

1.引入所需库,加载数据集(MNIST)

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy

# 一个函数,用来计算模型中有多少参数
def get_n_params(model):
    np=0
    for p in list(model.parameters()):
        np += p.nelement()
    return np

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

PyTorch里包含了 MNIST, CIFAR10 等常用数据集,调用 torchvision.datasets
即可把这些数据由远程下载到本地,下面给出MNIST的使用方法:

torchvision.datasets.MNIST(root, train=True, transform=None,
target_transform=None, download=False) root 为数据集下载到本地后的根目录,包括
training.pt 和 test.pt 文件
train,如果设置为True,从training.pt创建数据集,否则从test.pt创建。 download,如果设置为True,
从互联网下载数据并放到root文件夹下 transform, 一种函数或变换,输入PIL图片,返回变换之后的数据。
target_transform 一种函数或变换,输入目标,进行变换。
另外值得注意的是,DataLoader是一个比较重要的类,提供的常用操作有:batch_size(每个batch的大小),
shuffle(是否进行随机打乱顺序的操作), num_workers(加载数据的时候使用几个子进程)

input_size  = 28*28   # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 0 到 9 的数字,因此为十类

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=True, download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=64, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=False, transform=transforms.Compose([
             transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=1000, shuffle=True)

显示数据集中的部分图像

plt.figure(figsize=(8, 5))
for i in range(20): #元素总数=行*列
    plt.subplot(4, 5, i + 1)  #4行5列
    image, _ = train_loader.dataset.__getitem__(i)
    plt.imshow(image.squeeze().numpy(),'gray')
    plt.axis('off');

在这里插入图片描述

2.构建网络

  • Softmax函数常用的用法是指定参数dim就可以:
    (1)dim=0:对每一列的所有元素进行softmax运算,并使得每一列所有元素和为1。
    (2)dim=1:对每一行的所有元素进行softmax运算,并使得每一行所有元素和为1。

  • LogSoftmax其实就是对softmax的结果进行log,即Log(Softmax(x))
    LogSoftmax的作用:
    速度变快,数据稳定(些值经过softmax后概率非常低, 会下溢出. 所以一般会取概率的log表示概率)

  • forward 函数定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来。

  • x.view()将向量铺平,便于传入全连接层,比如使矩阵的每行存放一张图片的各个参数,即使每行对应一张图片。

  • 网络层次:卷积-relu激活-池化-卷积-激活-池化-矩阵变形处理(便于传入全连接层)-全连接-激活-全连接-输出

class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)  #Log(Softmax(x))
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size (行)是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)



class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        #卷积层
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        #输入、输出、卷积核
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        #全连接层
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)  #最后分为10类    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
      #卷积-relu激活-池化-卷积-激活-池化-矩阵变形处理(便于传入全连接层)-全连接-激活-全连接-输出
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x

3.定义训练函数和测试函数

# 训练函数
def train(model):
    model.train()
    # 从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            
#测试            
def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))         

4.在小型全连接网络上训练(Fully-connected network)

n_hidden = 8 # number of hidden units隐藏层单元数

model_fnn = FC2Layer(input_size, n_hidden, output_size)#全连接层参数
model_fnn.to(device)#运行到GPU
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)

结果:
在这里插入图片描述

5.在卷积神经网络上训练

# Training settings 在卷积神经网络上训练
n_features = 6 # number of feature maps 特征图

model_cnn = CNN(input_size, n_features, output_size)  #卷积神经网络参数
model_cnn.to(device)

optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)

结果:
在这里插入图片描述

通过上面的测试结果,可以发现,含有相同参数的 CNN 效果要明显优于 简单的全连接网络,是因为 CNN
能够更好的挖掘图像中的信息,主要通过两个手段:

  • 卷积:Locality and stationarity in images
  • 池化:Builds in some translation invariance

6.打乱像素顺序再次在两个网络上训练与测试

考虑到CNN在卷积与池化上的优良特性,如果我们把图像中的像素打乱顺序,这样 卷积 和 池化
就难以发挥作用了,为了验证这个想法,我们把图像中的像素打乱顺序再试试。

首先下面代码展示随机打乱像素顺序后,图像的形态:

# 这里解释一下 torch.randperm 函数,给定参数n,返回一个从0到n-1的随机整数排列
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels随机排列像素顺序
    image_perm = image.view(-1, 28*28).clone()  #转化为二维矩阵
    image_perm = image_perm[:, perm]  #乱序
    image_perm = image_perm.view(-1, 1, 28, 28) #恢复四维
    #绘图
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')

结果:
在这里插入图片描述

重新定义训练与测试函数,我们写了两个函数 train_perm 和 test_perm,分别对应着加入像素打乱顺序的训练函数与测试函数。
与之前的训练与测试函数基本上完全相同,只是对 data 加入了打乱顺序操作。

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

在全连接网络上训练与测试:

perm = torch.randperm(784)
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train_perm(model_fnn, perm)
test_perm(model_fnn, perm)

结果:
在这里插入图片描述

在卷积神经网络上训练与测试:

perm = torch.randperm(784)
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train_perm(model_cnn, perm)
test_perm(model_cnn, perm)

结果:
在这里插入图片描述

但是打乱像素顺序后,全连接网络的性能基本上没有发生变化,但是 卷积神经网络的性能明显下降。
这是因为对于卷积神经网络,会利用像素的局部关系,但是打乱顺序以后,这些像素间的关系将无法得到利用。

(二)练习2 CIFAR10 数据集分类:使用 CNN 对 CIFAR10 数据集进行分类

对于视觉数据,PyTorch 创建了一个叫做 totchvision 的包,该包含有支持加载类似Imagenet,CIFAR10,MNIST
等公共数据集的数据加载模块 torchvision.datasets 和支持加载图像数据数据转换模块
torch.utils.data.DataLoader。

下面将使用CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’,
‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10
中的图像尺寸为3x32x32,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。

1.引入所需库,加载数据集(CIFAR10)

首先,加载并归一化 CIFAR10 使用 torchvision 。torchvision 数据集的输出是范围在[0,1]之间的 PILImage,我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors。

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 注意下面代码中:训练的 shuffle 是 True,测试的 shuffle 是 false
# 训练时可以打乱顺序增加多样性,测试是没有必要
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

展示 CIFAR10 里面的一些图片

def imshow(img):
    plt.figure(figsize=(8,8))
    img = img / 2 + 0.5     # 转换到 [0,1] 之间
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

# 得到一组图像
images, labels = iter(trainloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示第一行图像的标签
for j in range(8):
    print(classes[labels[j]])

结果:
在这里插入图片描述

2.定义网络,损失函数和优化器:

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

3.训练和测试

训练网络

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

从测试集中取出8张图片:

# 得到一组图像
images, labels = iter(testloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示图像的标签
for j in range(8):
    print(classes[labels[j]])

在这里插入图片描述
把图片输入模型,看看CNN把这些图片识别成什么:

outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)

# 展示预测的结果
for j in range(8):
    print(classes[predicted[j]])

发现结果中有的图片识别错误
在这里插入图片描述
网络在整个数据集上的表现:

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

结果:
在这里插入图片描述
识别的准确率是63%。

(三)练习3 使用 VGG16 对 CIFAR10 分类

VGG16介绍

VGG是由Simonyan 和Zisserman在文献《Very Deep Convolutional Networks for Large
Scale Image Recognition》中提出卷积神经网络模型,其名称来源于作者所在的牛津大学视觉几何组(Visual
Geometry Group)的缩写。

该模型参加2014年的 ImageNet图像分类与定位挑战赛,取得了优异成绩:在分类任务上排名第二,在定位任务上排名第一。

VGG16的网络结构如下图所示:
在这里插入图片描述
16层网络的结节信息如下:
01:Convolution using 64 filters
02: Convolution using 64 filters + Max pooling
03: Convolution using 128 filters
04: Convolution using 128 filters + Max pooling
05: Convolution using 256 filters
06: Convolution using 256 filters
07: Convolution using 256 filters + Max pooling
08: Convolution using 512 filters
09: Convolution using 512 filters
10: Convolution using 512 filters + Max pooling
11: Convolution using 512 filters
12: Convolution using 512 filters
13: Convolution using 512 filters + Max pooling
14: Fully connected with 4096 nodes
15: Fully connected with 4096 nodes
16: Softmax

1. 定义 dataloader

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

2.定义VGG网络

class VGG(nn.Module):
    def __init__(self):
        super(VGG, self).__init__()
        cfg = [64,64, 'M',128,128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
        self.features = self._make_layers(cfg)
        self.classifier = nn.Linear(512, 10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)] #池化
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), #卷积
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

代码修改的部分:
在这里插入图片描述

# 网络放到GPU上
net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

3.网络训练

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

一开始报了矩阵乘法错误,显然两个矩阵的行列不匹配,这里返回上一步修改2048为512,可以正常运行了。
在这里插入图片描述
运行结果:
在这里插入图片描述

4.测试验证准确率

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %.2f %%' % (
    100 * correct / total))

结果:
在这里插入图片描述
可以看到,使用一个简化版的 VGG 网络,就能够显著地将准确率由 63%,提升到 83%。

三、本周写博客需要思考的问题:

5、residual leanring 为什么能够提升准确率?

(1)不会存在梯度消失问题,可以用来训练非常深的网络结构
在这里插入图片描述
如图所示ResNet的输出不再是一个复合函数的形式,而是加了一个x,这样求导的结果就不是一个乘积的形式,而是加了一个1,解决了梯度消失的问题。
(2)是一个非常灵活的结构,可以自适应去学习应有的网络深度
如上图所示,输入x,当输出f(x)=0时,f(x)+x=x。

6、代码练习二里,网络和1989年 Lecun 提出的 LeNet 有什么区别?

激活函数不同,LeNet使用sigmoid激活函数,代码练习二中使用ReLu激活函数;
网络结构略有不同,比如池化的方法、全连接层的个数。

7、代码练习二里,卷积以后feature map 尺寸会变小,如何应用 Residual Learning?

令padding=1,进行零填充。

8、有什么方法可以进一步提升准确率?

使用Dropout防止过拟合;
选用更合适的池化方法,比如最大值池化更适合分类问题;
增加数据集的数据量,对于图片数据,可以采用平移、翻转等方法使数据倍增;
增加residual learning网络的深度;
选用更合适的损失函数和激活函数;

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学模型,常用于图像识别和计算机视觉任务。卷积神经网络的基本结构包括卷积层、池化层和全连接层[1]。典型的卷积神经网络结构有AlexNet、ZFNet、VGG、GoogleNet和ResNet等。 其中,ResNet是引入了残差学习网络的一种深度神经网络模型,它解决了梯度消失的问题,可以用来训练非常深的网络。 在使用卷积神经网络进行图像分类时,需要定义网络结构。可以通过继承nn.Module类并实现其forward方法来定义网络。可学习参数的层应该放在构造函数的init方法中。 总的来说,卷积神经网络是一种用于图像识别和计算机视觉任务的深度学习模型,具有卷积层、池化层和全连接层。ResNet是一种引入了残差学习网络的深度神经网络模型,解决了梯度消失问题。在定义卷积神经网络时,需要继承nn.Module类,并实现其forward方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【OUC_SE_2022】第三周作业卷积神经网络基础](https://blog.csdn.net/OUC_SE_GROUP18/article/details/127340419)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

in&de

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值