一个人的旅行 --- 最短路 Dijkstra算法

该博客介绍了一个使用Dijkstra算法解决旅行路径最短时间的问题。草儿是一个喜欢旅行但方向感不强的女孩,她计划在寒假期间去一个心仪的目的地,同时要确保旅行时间和训练时间的平衡。通过输入各个城市的交通信息和草儿家的相邻城市及目的地,利用Dijkstra算法找到从草儿家出发到目的地的最短时间。代码示例展示了如何实现这一算法并输出最短旅行时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

一个人的旅行

**
题目:
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,0),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。

Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。

Output
输出草儿能去某个喜欢的城市的最短时间。

Sample Input

6 2 3
1 3 5
1 4 7
2 8 12
3 8 4
4 9 12
9 10 2
1 2
8 9 10

Sample Output

9

思路:
Dijkstra算法,假定草儿家在0的位置,而从草儿家到相邻的城市的时间记为0,从所有目的地中选出花费时间最短。
代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int e[1100][1100],book[1100],dis[1100],vis[1100],d,t,s,n=0;
int inf=0x3f3f3f;
int a[1100];
void dijk()
{
    int i,j,k;
    for(i=1;i<=n;i++)
    {
        dis[i]=e[0][i];
    }
    for(i=1;i<=n-1;i++)
    {
        int min=inf;
        for(j=1;j<=n;j++)
        {
            if(book[j]==0&&dis[j]<min)
            {
                min=dis[j];
                k=j;
            }
        }
        book[k]=1;
        for(j=1;j<=n;j++)
        {
            if(dis[j]>dis[k]+e[k][j])
            {
                dis[j]=dis[k]+e[k][j];
            }
        }
    }
}
int main()
{
    int x,y,i,j,k;
    while(~scanf("%d%d%d",&t,&s,&d))
    {
        memset(book,0,sizeof(book));
        for(i=0;i<=1001;i++)
        {
            for(j=0;j<=1001;j++)
             {
                 if(i==j)
                    e[i][j]=0;
                 else
                    e[i][j]=inf;
             }
        }
        dis[0]=0;
        for(i=1;i<=t;i++)
        {
            scanf("%d%d%d",&x,&y,&k);
            if(x>n)
                n=x;
            if(y>n)
                n=y;
            if(e[x][y]>k)
            {
                e[x][y]=e[y][x]=k;
            }
        }
        for(i=1;i<=s;i++)
        {
            scanf("%d",&x);
            dis[x]=0;
            e[0][x]=0;
            e[x][0]=0;
        }
        for(i=1;i<=d;i++)
        {
            scanf("%d",&a[i]);
        }
        dijk();
        int min=inf;
        for(i=1;i<=d;i++)
        {
            if(dis[a[i]]<min)
                min=dis[a[i]];
        }
        printf("%d\n",min);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值