**
一个人的旅行
**
题目:
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,0),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
Output
输出草儿能去某个喜欢的城市的最短时间。
Sample Input
6 2 3
1 3 5
1 4 7
2 8 12
3 8 4
4 9 12
9 10 2
1 2
8 9 10
Sample Output
9
思路:
Dijkstra算法,假定草儿家在0的位置,而从草儿家到相邻的城市的时间记为0,从所有目的地中选出花费时间最短。
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int e[1100][1100],book[1100],dis[1100],vis[1100],d,t,s,n=0;
int inf=0x3f3f3f;
int a[1100];
void dijk()
{
int i,j,k;
for(i=1;i<=n;i++)
{
dis[i]=e[0][i];
}
for(i=1;i<=n-1;i++)
{
int min=inf;
for(j=1;j<=n;j++)
{
if(book[j]==0&&dis[j]<min)
{
min=dis[j];
k=j;
}
}
book[k]=1;
for(j=1;j<=n;j++)
{
if(dis[j]>dis[k]+e[k][j])
{
dis[j]=dis[k]+e[k][j];
}
}
}
}
int main()
{
int x,y,i,j,k;
while(~scanf("%d%d%d",&t,&s,&d))
{
memset(book,0,sizeof(book));
for(i=0;i<=1001;i++)
{
for(j=0;j<=1001;j++)
{
if(i==j)
e[i][j]=0;
else
e[i][j]=inf;
}
}
dis[0]=0;
for(i=1;i<=t;i++)
{
scanf("%d%d%d",&x,&y,&k);
if(x>n)
n=x;
if(y>n)
n=y;
if(e[x][y]>k)
{
e[x][y]=e[y][x]=k;
}
}
for(i=1;i<=s;i++)
{
scanf("%d",&x);
dis[x]=0;
e[0][x]=0;
e[x][0]=0;
}
for(i=1;i<=d;i++)
{
scanf("%d",&a[i]);
}
dijk();
int min=inf;
for(i=1;i<=d;i++)
{
if(dis[a[i]]<min)
min=dis[a[i]];
}
printf("%d\n",min);
}
return 0;
}