300. 最长递增子序列
问题描述
难度中等2653收藏分享切换为英文接收动态反馈
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3] 输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7] 输出:1
提示:
-
1 <= nums.length <= 2500
-
-104 <= nums[i] <= 104
进阶:
-
你能将算法的时间复杂度降低到
O(n log(n))
吗?
思路
我们使用dp[i]表示第i位数字前的最长上升子序列的长度;
i<j ,dp[j]是在i之前的最长上升子序列 如果nums[i]>nums[j],那么很明显dp[i]=dp[j]+1
我们的任务是找出i之前所有的j,使得dp[i]是一个最大值 那么递推公式就出来了
那么事情变得简单了起来,再想想初始条件 dp[0]=1
两个for循环 一个遍历i 一个遍历j 时间复杂度O(n2)
代码演示
//最长上升子序列
#include<iostream>
//diercishiyan
#include<vector>
using namespace std;
//xiugai
class Solution {
public:
int lengthOfLIS(vector<int>& nums)
{int n=0;
vector<int> dp(nums.size(),1);//创造一个长度为数组长度的dp数组;初值全部为1
for(int i=0;i<nums.size();i++)
{
for(int j=0;j<i;j++)
{if(nums[i]>nums[j])
dp[i]=max(dp[i],dp[j]+1);
}
if(n<dp[i])
n=dp[i];
}
return n;
}
};
int main()
{
vector<int>nums;
int shuzu[8]={10,9,2,5,3,7,101,18};
nums.insert(nums.begin(),shuzu,shuzu+8);//初始化数组
Solution s;
cout<<s.lengthOfLIS(nums);
system("pause");
return 0;
}