300. 最长递增子序列(动态规划)

300. 最长递增子序列

问题描述

难度中等2653收藏分享切换为英文接收动态反馈

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
​

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4
​

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500

  • -104 <= nums[i] <= 104

进阶:

  • 你能将算法的时间复杂度降低到 O(n log(n)) 吗?

思路

我们使用dp[i]表示第i位数字前的最长上升子序列的长度;

i<j ,dp[j]是在i之前的最长上升子序列 如果nums[i]>nums[j],那么很明显dp[i]=dp[j]+1

我们的任务是找出i之前所有的j,使得dp[i]是一个最大值 那么递推公式就出来了

那么事情变得简单了起来,再想想初始条件 dp[0]=1

两个for循环 一个遍历i 一个遍历j 时间复杂度O(n2)

代码演示

 
//最长上升子序列
#include<iostream>
//diercishiyan 
#include<vector>
using namespace std;
//xiugai
class Solution {
public:
    int lengthOfLIS(vector<int>& nums)
    {int n=0;
    vector<int> dp(nums.size(),1);//创造一个长度为数组长度的dp数组;初值全部为1
    for(int i=0;i<nums.size();i++)
    {
        for(int j=0;j<i;j++)
        {if(nums[i]>nums[j])
        dp[i]=max(dp[i],dp[j]+1);
        } 
        if(n<dp[i])
         n=dp[i];
    }
   return n;
    }
};
int main()
{
vector<int>nums;
int shuzu[8]={10,9,2,5,3,7,101,18};
nums.insert(nums.begin(),shuzu,shuzu+8);//初始化数组
Solution s;
cout<<s.lengthOfLIS(nums);
​
    system("pause");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜业

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值