Semantic Communications With Artificial Intelligence Tasks
降低带宽需求并提高人工智能任务性能
· 作者: YANG YANG , CAILI GUO , FANGFANG LIU, LUNAN SUN , CHUANHONG LIU, and QIZHENG SUN
· 所属机构: 北京邮电大学信息与通信工程学院
· 关键词: 语义通信、人工智能任务、带宽、图像分类、表面缺陷检测
· 时间: 2022 年 5 月 26 日
· 期刊:IEEE Industrial Electronics Magazine ( 卷:17,期号:2023 年 9 月 3 日)
这篇文章下游任务主要是做缺陷图像分类,有硬件平台。
研究背景:
1. 无线网络的范式转变: 从“连接事物”到“连接智能”的转变,与香农和韦弗的愿景相契合,即通信将从技术层面转向语义层面。
2. 语义通信(SC)方法: 提出一种结合人工智能任务(AITs)的SC方法,旨在降低带宽需求并提高AITs的性能。
3. 未来趋势和挑战: 识别SCs的未来趋势和关键挑战。
研究方法:
1. SC-AIT架构: 阐述SC-AIT的架构,包括有效性层面、语义层面和技术层面。
2. 实现SC-AIT: 基于提出的架构,为图像分类任务实现SC-AIT,并建立表面缺陷检测的原型。
3. 设计知识库:利用CNN对特征映射的输出梯度作用映射到不同类的重要性权重作为知识库。
4. 性能评估: 通过实验结果验证SC-AIT的效率,并与传统JPEG传输和未考虑AITs的SCs进行比较。
实验设计:
1. 原型建立: 建立SC原型,用于实施SC-AIT,考虑热轧钢带表面缺陷检测任务。
2. 性能评估: 在NEU数据集和STL-10数据集上评估SC-AIT的性能,比较不同信噪比(SNR)和不同可用带宽下的分类准确率。
结果分析:
1. 带宽需求: SC-AIT相比传统JPEG传输方法,具有更低的带宽需求。
2. 分类准确率: SC-AIT在高达40%的分类准确率增益方面优于技术层面的通信。
3. 复杂性分析: SC-AIT的系统运行时复杂性低于传统JPEG传输,特别适合延迟敏感型应用和计算能力有限的系统。
4. 资源分配: SCs需要通信和智能的无缝集成,涉及通信资源、计算资源、缓存资源和控制策略的联合分配。
总体结论:
1. SC-AIT的贡献: 提出了一种新的SC-AIT范式,通过在有效性层面放置AI任务,仅传输对AI任务重要的语义信息,有效完成AI任务。
2. 未来工作: 将研究提出的SC方法的资源分配问题,并将设计原则应用于其他AI任务和神经网络。