Ai-WB2-32S 对接阿里云物联网平台实时监控二氧化碳数值(JW01-CO2-V2.2)


前言

最近博主尝试将mqtt的tcp demo和uart的demo放在一起,将数据上传到阿里云物联网平台进行实时监控,下面介绍一下步骤!

一、在阿里云物联网平台上创建产品和设备

第一步 大家先注册一个阿里云平台的账号

第二步 使用免费产品

图一
图二
图三
图四图五图六
图七
图八
图九
图十
图十一
图十二
图十三
图十四
图十五
点击完成即可
图十六
图十七
图十八
图十九
图二十
图二十一
复制设备到云平台消息中topic后的内容
例如博主这里是:/sys/k0ataNPqWKb/co2_data/thing/event/property/post
复制payload后面加上大括号的内容
例如博主这里是:{“id”:1709282051065,“params”:{“CO2”:22},“version”:“1.0”,“method”:“thing.event.property.post”}

图二十二
图二十三

图二十四
图二十五
图二十六
图二十七
图二十八
别忘点击保存哦

好嘞!产品和设备的创建,以及后续需要的数据都准备好了,下面开始写代码了!

二、编写代码

第一步 直接点击下面的链接进行下载

https://pan.baidu.com/s/1Z6R6CSn-GPS0uV6I_gBCpA?pwd=std1

第二步 将压缩包解压到下图所示的目录

图一

第三步 打开vscode并进入msys终端进入此目录

在终端输入下面的指令:
D:\mys64\msys2_shell.cmd -defterm -no-start(这里的指令只需要输入自己的msys2安装的地址后加上msys2_shell.cmd -defterm -no-start,应为大家安装位置可能都不一样,所以提示一下)

图二
修改fuction.c
图三
修改main.h文件
图四

打开前面创建的文本文档
这里用博主的数据举个例子

/sys/k0ataNPqWKb/co2_data/thing/event/property/post
{"id":1709282051065,"params":{"CO2":22},"version":"1.0","method":"thing.event.property.post"}



{"clientId":"k0ataNPqWKb.co2_data|securemode=2,signmethod=hmacsha256,timestamp=1709282577069|","username":"co2_data&k0ataNPqWKb","mqttHostUrl":"iot-06z00ap0vwcjswq.mqtt.iothub.aliyuncs.com","passwd":"40aeb4ae2a9a8d191a94bbabfbae0d2975ce0f056e263f22bee0148849f415b7","port":1883}

URL:"iot-06z00ap0vwcjswq.mqtt.iothub.aliyuncs.com"
CLENT_ID:"k0ataNPqWKb.co2_data|securemode=2,signmethod=hmacsha256,timestamp=1709282577069|"
USERNAME:"co2_data&k0ataNPqWKb"
PASSWD:"40aeb4ae2a9a8d191a94bbabfbae0d2975ce0f056e263f22bee0148849f415b7"
PORT:1883
DATA_TOPIC:"/sys/k0ataNPqWKb/co2_data/thing/event/property/post"
CO2_DATA:{"id":1709282051065,"params":{"CO2":%d},"version":"1.0","method":"thing.event.property.post"}/*注意"CO2"后面的要填%d*/

好嘞,填好之后就修改下一个文件吧(但是使用完,下面的文件一定要再修改回去,要不然其它的demo就能用了)

修改bl_uart.c文件
图五
代码如下:

#ifdef BL602_USE_HAL_DRIVER
void UART0_IRQHandler(void)
{
    uart_generic_notify_handler(0);
}
#if 0
void UART1_IRQHandler(void)
{
    uart_generic_notify_handler(1);
}
#endif
#endif

然后就要开始编译了

三、编译

第一步 进入co2目录

cd ~/Ai-Thinker-WB2/applications/peripherals/co2/
图一

第二步 进行编译

make -j8
图二
图三

四、烧录

可以参考下面的链接的烧录过程:
https://blog.csdn.net/qq_54193285/article/details/136372810?spm=1001.2014.3001.5501
注意:只不过选择的firmware文件不一样,需要选择co2文件的路径
图一
图二
其它过程皆一样

五、演示

第一步 打开串口调试助手并开始打开串口

图一
图二

第二步 将传感器与模组相连

传感器 模组
A IO4
B IO3
+5V +5V
GND GND

图三

第三步 按下模组的复位键开始执行

图四

第四步 成果

注意:模组需要预热一段时间才有数据
图五
图六
图七
图八

总结

千万不要忘了把bl_uart.c文件修改回去哦!!!
有什么问题可以私信博主!
以上就是本期分享的内容,这里使用的传感器为JW-CO2-V2.2(模拟二氧化碳检测模块),云平台是阿里云物联网平台,更多资料可从安信可官网上获取。

官方官网:https://www.ai-thinker.com
开发资料:https://docs.ai-thinker.com/
官方论坛:http://bbs.ai-thinker.com
技术支持:support@aithinker.com

  • 29
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: FCN-8s、FCN-16s、FCN-32s是基于全卷积神经网络(Fully Convolutional Network,FCN)的语义分割模型。它们分别使用了8倍、16倍、32倍的下采样和上采样,以实现对输入图像的像素级别的分类和分割。其中,FCN-8s是最早提出的模型,FCN-16s和FCN-32s则是在其基础上进行了改进和优化。这些模型在图像分割领域取得了很好的效果,被广泛应用于自动驾驶、医学图像分析等领域。 ### 回答2: FCN是全卷积神经网络(Fully Convolutional Networks)的缩写,是在CNN(卷积神经网络)的基础上进行修改和扩展得到的一个特殊网络结构。FCN的主要特点是可以处理图像的变换和尺度变化,能够输出与输入图像大小相同的特征图,是语义分割和目标识别领域常用的方法之一。 FCN-8s,FCN-16s和FCN-32s是FCN的三种不同变种。其中的数字表示网络最后一层的步长(stride)。简单来说,stride指的是卷积核在对图像进行卷积时每次移动的像素数。步长为1时,卷积核每次移动一个像素;步长为2时,每次移动两个像素。 FCN-32s是最简单的FCN结构,它的输出尺寸为输入图像尺寸的1/32,每层卷积后,特征图的尺度会缩小2倍,因此需要先将输入图像缩小32倍,然后送入网络进行训练和测试。FCN-32s的性能较低,适合处理相对较小的图像。 FCN-16s和FCN-8s是FCN网络中比较优秀的版本。他们的输出分别为输入图像尺寸的1/16和1/8。FCN-16s和FCN-32s的主要区别在于初始化策略不同。在FCN-16s中,使用了另一个FCN-32s模型的参数来进行初始化,同时保留了FCN-32s中的pool5层,这样可以利用FCN-32s中的pool5层提取的高层特征来进行计算,从而提高分割的精度。在FCN-8s中,使用了FCN-16s模型的参数来进行初始化,同时再加入一个新的迭代层来进行计算,提取更多的低层特征,从而进一步提高分割的精度。 总之,FCN-32s、FCN-16s和FCN-8s是一系列针对不同需求的图像语义分割神经网络。在实际应用中,可以根据具体需求和计算资源等因素选择不同的FCN结构,以获得更好的分割效果。 ### 回答3: FCN(Fully Convolutional Network)是一种基于卷积神经网络的语义分割网络模型。FCN架构的出现,使得我们可以用卷积神经网络来解决图像语义分割问题。FCN-8s、FCN-16s、FCN-32s是FCN网络的不同版本,下面我将分别介绍它们的特点和应用。 FCN-8s FCN-8s是第一个被提出并被广泛应用的FCN版本。它的主要特点是将VGG-16网络的最后三层全连接层(FC6,FC7和FC8)替换为卷积层。这个替换过程将输入图像映射到相应的feature map,以此来解决图像中像素级别的物体分类问题。FCN-8s包含了三个分辨率的feature map,分别是14×14,28×28和56×56。这三个特征图分别代表了高层次,中层次和低层次的图像特征。FCN-8s性能达到了目前最好的语义分割模型。 FCN-16s FCN-16s是FCN的改进版本。它是在FCN-8s的基础上加入了额外的pooling层,从而使得feature map的分辨率减小了,并提高了模型的速度。FCN-16s包含了两个分辨率的feature map,分别是14×14和28×28。它的主要应用是在对速度要求较高的任务中进行物体的语义分割。 FCN-32s FCN-32s是最简单的FCN版本。它是将VGG-16网络的所有全连接层都替换为卷积层,并且只有一个feature map,分辨率为32×32。FCN-32s的训练速度和推断速度都很快,并且是一个参数较少的模型。但是,它的性能要略低于FCN-16s和FCN-8s。 总之,FCN-8s、FCN-16s和FCN-32s都是基于卷积神经网络的图像语义分割模型,它们分别在速度和准确性方面有所不同,并适用于不同类型的场景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值