Ai-WB2-32S SPI写入SD卡


前言

这期写一篇用SPI外设将文件写入SD卡,这里是源代码链接链接:https://pan.baidu.com/s/1lCu8Ejf9bgUP782HrzzLTw
提取码:1234
;点击这个链接查看烧录流程,下面主要介绍使用流程。

一、准备

  • 六根杜邦线
  • 一个SD卡读卡模块
  • Ai-WB2-32S模组(注意这里的模组需要是内置Flash类型的)
  • 一个SD卡
  • 一根Topc线
  • 一个读卡器
    图一
    图二

二、移植步骤

第1步 下载代码文件

图三

第2步 将压缩文件复制到虚拟机并解压

图四
图五
图六

第3步 将spi文件复制到

图七
图八

第4步 烧录(应为内部文件已经编译,因此只需要烧录就好了)

流程可查看链接的第5步烧录固件流程

三、测试

第1步 将模组连接到主机

图九

第2步 打开串口调试助手

图十

第3步 连接32S模组和SD卡读卡模块

图十一
图十二
连线对应关系
Ai-WB2-32S SD卡读卡模块
IO3 CLK
IO17 MISO
IO4 CS
IO12 MOSI
GND GND
5V VCC

第4步 按下Ai-WB2-32S模组RST键(复位)

图十三

第5步 查看串口调试助手

图十四

第6步 等待写入完成

图十五

第7步 将SD卡放入读卡器,连接到主机,查看TEST.txt文件内容

图十六

图十七

总结

以上就是本期分享的内容,目的为了介绍一下这个示例的使用方法。这里将STM32的示例改为BL603芯片的流程,博主也是修改了好多地方,但是具体的过程有点繁杂,因此如果想要了解具体移植流程可以私信我。更多资料可从安信可官网上获取。

官方官网:https://www.ai-thinker.com
开发资料:https://docs.ai-thinker.com/
官方论坛:http://bbs.ai-thinker.com
技术支持:support@aithinker.com

参考链接:https://blog.csdn.net/qq_54496810/article/details/122073446

  • 31
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: FCN-8s、FCN-16s、FCN-32s是基于全卷积神经网络(Fully Convolutional Network,FCN)的语义分割模型。它们分别使用了8倍、16倍、32倍的下采样和上采样,以实现对输入图像的像素级别的分类和分割。其中,FCN-8s是最早提出的模型,FCN-16s和FCN-32s则是在其基础上进行了改进和优化。这些模型在图像分割领域取得了很好的效果,被广泛应用于自动驾驶、医学图像分析等领域。 ### 回答2: FCN是全卷积神经网络(Fully Convolutional Networks)的缩写,是在CNN(卷积神经网络)的基础上进行修改和扩展得到的一个特殊网络结构。FCN的主要特点是可以处理图像的变换和尺度变化,能够输出与输入图像大小相同的特征图,是语义分割和目标识别领域常用的方法之一。 FCN-8s,FCN-16s和FCN-32s是FCN的三种不同变种。其中的数字表示网络最后一层的步长(stride)。简单来说,stride指的是卷积核在对图像进行卷积时每次移动的像素数。步长为1时,卷积核每次移动一个像素;步长为2时,每次移动两个像素。 FCN-32s是最简单的FCN结构,它的输出尺寸为输入图像尺寸的1/32,每层卷积后,特征图的尺度会缩小2倍,因此需要先将输入图像缩小32倍,然后送入网络进行训练和测试。FCN-32s的性能较低,适合处理相对较小的图像。 FCN-16s和FCN-8s是FCN网络中比较优秀的版本。他们的输出分别为输入图像尺寸的1/16和1/8。FCN-16s和FCN-32s的主要区别在于初始化策略不同。在FCN-16s中,使用了另一个FCN-32s模型的参数来进行初始化,同时保留了FCN-32s中的pool5层,这样可以利用FCN-32s中的pool5层提取的高层特征来进行计算,从而提高分割的精度。在FCN-8s中,使用了FCN-16s模型的参数来进行初始化,同时再加入一个新的迭代层来进行计算,提取更多的低层特征,从而进一步提高分割的精度。 总之,FCN-32s、FCN-16s和FCN-8s是一系列针对不同需求的图像语义分割神经网络。在实际应用中,可以根据具体需求和计算资源等因素选择不同的FCN结构,以获得更好的分割效果。 ### 回答3: FCN(Fully Convolutional Network)是一种基于卷积神经网络的语义分割网络模型。FCN架构的出现,使得我们可以用卷积神经网络来解决图像语义分割问题。FCN-8s、FCN-16s、FCN-32s是FCN网络的不同版本,下面我将分别介绍它们的特点和应用。 FCN-8s FCN-8s是第一个被提出并被广泛应用的FCN版本。它的主要特点是将VGG-16网络的最后三层全连接层(FC6,FC7和FC8)替换为卷积层。这个替换过程将输入图像映射到相应的feature map,以此来解决图像中像素级别的物体分类问题。FCN-8s包含了三个分辨率的feature map,分别是14×14,28×28和56×56。这三个特征图分别代表了高层次,中层次和低层次的图像特征。FCN-8s性能达到了目前最好的语义分割模型。 FCN-16s FCN-16s是FCN的改进版本。它是在FCN-8s的基础上加入了额外的pooling层,从而使得feature map的分辨率减小了,并提高了模型的速度。FCN-16s包含了两个分辨率的feature map,分别是14×14和28×28。它的主要应用是在对速度要求较高的任务中进行物体的语义分割。 FCN-32s FCN-32s是最简单的FCN版本。它是将VGG-16网络的所有全连接层都替换为卷积层,并且只有一个feature map,分辨率为32×32。FCN-32s的训练速度和推断速度都很快,并且是一个参数较少的模型。但是,它的性能要略低于FCN-16s和FCN-8s。 总之,FCN-8s、FCN-16s和FCN-32s都是基于卷积神经网络的图像语义分割模型,它们分别在速度和准确性方面有所不同,并适用于不同类型的场景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值