项目场景:
解决Anaconda虚拟环境安装不同版本的CUDA+Cudnn
问题描述
深度学习中我们训练不同的模型,有可能会用到不同的CUDA+Cudnn版本+pytorch,但在本地安装又比较麻烦,现在可以在Anaconda虚拟环境中安装与系统自带的不同版本,就以安装CUDA11.3+Cudnn8.2为例
安装Anaconda:
自己在csdn或百度搜教程
创建虚拟环境
win+R打开cmd 输入conda create -n env-name(你的虚拟环境名称) python==3.10(python版本)
72b81411e0e0.png)
激活
conda activate webui
安装CUDA11.3+Cudnn8.2
补充一句:查看系统cuda版本
nvcc --version
nvidia-smi
这些命令只是查看系统的cuda版本,下面要安装的是当前虚拟环境的版本
conda install cudatoolkit=11.3.1
conda install cudnn=8.2.1
其中Cudnn的版本一定要与Cuda兼容
下载慢时注意需要换源(具体方法在本站搜)

(重要)安装pytorch
这一步一定要去官网装(https://download.pytorch.org/whl/torch_stable.html)找到自己合适的版本下载到本地
依次执行
1)pip install E:\software\torch-1.12.0+cu113-cp38-cp38-win_amd64.whl
2)pip install E:\software\torchaudio-0.12.0+cu113-cp38-cp38-win_amd64.whl
3)pip install E:\software\torchvision-0.13.0+cu113-cp38-cp38-win_amd64.whl
pip install 后面的是刚才官网下载的pytorch地址
这一步需要注意自己的系统是否是windows,如果是linux可以去网址找到重新下载到本地
当然也可以使用下面命令在线安装
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
(一定注意自己的cuda版本)
下载完成后命令行输入python
import torch
print(torch.version.cuda)
查看当前环境中的cuda
检查
Pytorch
import torch
print(torch.cuda.is_available())
Tensorflow
import tensorflow as tf
print(tf.test.is_gpu_available())
返回Ture
这一步不对会出现False 回到按章pytorch那一步