SVM初学

这篇博客介绍了SVM的基础知识,通过Python实现展示了SVM的原理。实验结果显示了一条明显的分类边界,强调SVM的目标是寻找最宽的间隔以确保分类的鲁棒性。
摘要由CSDN通过智能技术生成

本章部分代码来自https://www.jb51.net/article/131580.htm

from sklearn import svm 
import numpy as np 
import matplotlib.pyplot as plt 
  
np.random.seed(0) 
x = np.r_[np.random.randn(20,2)-[2,2],np.random.randn(20,2)+[2,2]] #正态分布来产生数字,20行2列*2 
y = [0]*20+[1]*20 #20个class0,20个class1 
  
clf = svm.SVC(kernel='linear') 
clf.fit(x,y) 
  
w = clf.coef_[0] #获取w 
a = -w[0]/w[1] #斜率 
#画图划线 
xx = np.linspace(-5,5)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值