简介:本文从np.arange的基础语法,列举了多种参数的使用方式,拓展了常用的reshape方法,并且提醒大家避免一个常见的错误
本人目前全职在csdn上更新文章:Python基础,数据分析(Numpy、Matplotlib、Pandas)图像处理(OpenCV)爬虫 机器学习 深度学习 神经网络TensorFlow 。希望大家能多多的关注、评论、分享、点赞、收藏(我不打算开收费专栏,我以前当学生的时候手里就没什么钱,学点东西也不容易,当然了将心比心嘛,不过我也需要大家多多支持,数据不好看流量低,看不到希望,我就只能老老实实回去上班了,是人都要恰饭的嘛,也希望大家将心比心体谅一下我)
文章目录
1 语法
np.arange(start,stop,step,dtype=None)
1.1 不设置start的情况
# 不设置start默认是从0开始
import numpy as np
np_first = np.arange(15)
print(np_first)
1.2 不设置step与设置step
import numpy as np
np_first = np.arange(1,11)
np_second = np.arange(1,11,2)
print(np_first)
print(np_second)
前后两数只差为step
1.3设置 dtype
import numpy as np
np_first = np.arange(1,11,dtype = np.float64)
np_second = np.arange(1.0,11.0,2.0,dtype =np.uint8)
print(np_first)
print(np_second)
2 np.arange().reshape()
请看下面这个长度为12的np数组被重塑为3,4的二维数组
import numpy as np
np_first = np.arange(1,13).reshape(3,4)
print(np_first)
请注意 reshape这个形状元组的元素乘积必须和原np数组的size大小一致不然会报错,请看下面这个情况
import numpy as np
np_first = np.arange(1,13).reshape(3,5)
print(np_first)
3 np.arange()设置参数容易出错的地方(必看)
如果你想设置step,那么在你使用位置参数的方式时,必须有start
(如果您不懂什么是位置参数,可以先看案例)
import numpy as np
np_first = np.arange(1,13,2)
print(f"如果你想使用step那么必须有start参数,与位置参数对应的就是直接写明参数")
print(np_first)
np_second = np.arange(start = 1,stop = 10,step = 2)
print(r"这个是非位置参数的写法np_second = np.arange(start = 1,stop = 10,step = 2)")
print("如果你使用位置参数却写成了np_first = np.arange(13,2),编译器会认为start=13 stop=2")
np_third = np.arange(20,step = 2)
print("如果你非要两个参数还要表达step就要把step标注清楚")
print(np_second)
print(np_third)
沟通
如果你们哪里有看不懂的地方可以积极和我沟通,我哪里讲的不够全了,哪里讲的不太对了,万事万物都是发展的,当你们有经验了以后,你们也会发现我的不足,希望我们能共同进步。
致谢
本文参考了一些博主的文章,博取了他们的长处,也结合了我的一些经验,对他们表达诚挚的感谢,使我对 np.arange 的使用有更深入的了解,也推荐大家去阅读一下他们的文章。纸上学来终觉浅,明知此事要躬行:
numpy等差数列生成函数arange学习小结
【一文读懂】python 中的 numpy.reshape(a, newshape, order=‘C‘) 详细说明及实例讲解
结束语
我的文章知识比较全面,能阅读到最后的人肯定都是踏踏实实学习的人,希望大家不要太急功近利。
NumPy这种库他不是一下子就能怎样怎样的。看似我讲的这些不一定都能用到,但是当你学到以后,他会潜移默化改变你,当你的积累足够的时候,你也能闲庭信步的如臂指使,你才发现,这个我学过,那个我见过。
就好比我在大学上课的时候,我觉得这个是水课,那个没有用。实际上是因为他们讲的太过高深,在潜移默化的改变我的思维方式。看似当下用不到,但是他们却给我了见识和信心。
当然了,我也理解大家想要做出一点能改变,有意义的事情证明自己的学习进度。请您关注我,我会从Numpy讲到pandas Matplotlib和机器学习 和深度学习这些能让你看到效果的。路一步一步走,饭一口一口吃,百分之九十的人都不是天才,但是我愿意为了成功付出百倍的努力,希望与诸君共勉。
我能给大家保证的是,如果您踏踏实实的看完我的每一篇文章,这些代码您都能看懂,他都会是我曾经或者最近讲过的内容。