计算机专业一对一辅导 转眼已经大四了,我也成功保研到985学校,暑期无聊,想线上一对一辅导数据结构和C++两门课程,教你真正理解数据结构,会用代码实现数据结构,学会使用C++语言。如果想要辅导的可以私我哦。,相当于我听吴恩达课程的一个总结;再过了一段时间我发了一系列博客,使用Python代码画出动漫人物。至此之后,很长一段时间没有发任何博客。,讲解使用C++代码实现线性代数中的一些运算;欢迎有需求的同学联系!
(七)高斯判别分析 文章目录前言1. 判别模型和生成模型2. 高斯判别分析模型3. 参数估计4. 代码实现前言这篇文章总结一个生成模型——高斯判别分析。1. 判别模型和生成模型在监督学习中,模型训练成功后,我们往往会得到一个决策函数 f(x)f(x)f(x) 或者一个概率分布 P(y∣x)P(y|x)P(y∣x) ,当需要预测时,我们通过给定的 xxx ,使用 f(x)f(x)f(x) 作为 yyy 的预测值或者使用 P(y∣x)P(y|x)P(y∣x) 计算出概率。在之前总结的线性回归、逻辑回归等模型都是判
(六)多项式回归 文章目录前言1. 一个例子2. 多项式回归模型3. 代码实现前言这篇文章介绍多项式回归。1. 一个例子线性回归可以很好地拟合线性分布的数据,但是对于非线性的数据却派不上用场,例如下面的数据:这是一个简单的例子,它只有一个特征,输出变量 yyy 仅仅是关于这一个特征 xxx 的函数,但是线性回归却无法拟合它。之前学习了一种局部加权线性回归算法,它自然可以很好地拟合这样的数据分布,但是那种算法要求对每一种预测都要重新训练参数,它的拟合效果的确非常好,但是有一个很大的缺点就是时间代价太大。
(五)Softmax 回归 文章目录前言1. Softmax 回归模型2. 优化方法3. 代码实现总结前言这篇文章是关于 Softmax 回归算法的总结和代码实现,Softmax 回归算法可以借助广义线性模型推导,也可以和逻辑回归作对比,将其看成逻辑回归算法在多分类问题上的一个推广。1. Softmax 回归模型如果有一个多分类问题需要我们处理,我们假设输出变量 yyy 可能的取值为 {1,2,⋯ ,k}\left\{ 1,2,\cdots ,k \right\}{1,2,⋯,k} ,特征向量还是 x=(x0,x1,⋯
(四)广义线性模型 文章目录前言1. 指数型分布族1.1 理论1.2 实例2. 广义线性模型2.1 模型2.2 再看逻辑回归2.3 再看线性回归3. 再次理解前言这是观看吴恩达课程——广义线性模型后的自我总结与理解。1. 指数型分布族1.1 理论若随机变量 xxx 的密度函数可以写成如下形式:p(x;η)=h(x)exp(ηTT(x)−a(η))p\left( x;\eta \right) =h\left( x \right) \exp \left( \eta ^TT\left( x \right) -a
(三)局部加权线性回归 文章目录前言1. 局部加权线性回归模型2. 求解方法3. 代码实现前言 线性回归只能拟合线性曲面(广义的曲面),如果一个回归任务中的输出变量 y (y∈R)y\,\,\left( y\in \mathbb{R} \right)y(y∈R) 关于特征向量 x=(x0,x1,⋯ ,xn) (x∈Rn+1,x0=1)x=\left( x_0,x_1,\cdots ,x_n \right) \,\,\left( x\in \mathbb{R} ^{n+1},x_0=1 \right)x=(x0,x1