线性代数代码实现(三)矩阵的秩与可逆矩阵的判断(c++)

前言:

之前介绍了如何将一个矩阵化成上三角矩阵,不知道怎么将一个矩阵通过初等行变换化成上三角矩阵的伙伴们可以参考我的上一篇文章线性代数代码实现(二)上三角矩阵(C++)_qq_54434938的博客-CSDN博客

之前在这里写到矩阵的秩就是上三角矩阵中非零行的个数,这个结论是错误的

这篇文章中我们主要探讨矩阵的秩和可逆矩阵相关知识以及代码实现判断可逆矩阵,话不多说现在切入正题!

一、线性代数知识回顾:

1.   根据线性代数知识,将矩阵通过初等行变换化成这样的矩阵:

对于矩阵每行的第一个非零元素,记为a_{ij},若存在下一行,则:

a_{kj}=0,\,k=1,2,\cdots,i+1

矩阵的秩就等于变换后的矩阵中非零行的数目。

之前在这里写到矩阵的秩就是上三角矩阵中非零行的个数,这个结论是错误的

2.  单位矩阵:主对角线元素为 1 ,其余元素为 0 的方阵(行数和列数相等的矩阵),记为EE_{n}E_{n} 指行数与列数为 n 的单位矩阵)或者 I 、I_{n}

3.  可逆矩阵:A=(a_{ij})_{n\times n}是一个方阵,如果存在另外一个方阵B=(b_{ij})_{n\times n},使得AB=E,则称A 为可逆矩阵,称 B 为 A 的逆,记A^{-1}=B

矩阵的秩是很好求的。关键是如何判断一个矩阵是否可逆呢?如果根据可逆矩阵的定义,我们几乎无法求解一个矩阵是否可逆,因为另外一个方阵B 的可能取值有无数个,我们总不可能遍历所有B 吧!其实,根据线性代数知识,我在这里介绍一种定理(这种定理的证明我就不在这里叙述了,有兴趣的同学可以翻看资料):

        n 阶矩阵可逆的充要条件是这个矩阵的秩为 n(满秩)

二、代码实现:

类的设计:

class Mat
{
public:
	int m = 1, n = 1; //行数和列数
	double mat[N][N] = { 0 };  //矩阵开始的元素

	Mat() {}
	Mat(int mm, int nn)
	{
		m = mm; n = nn;
	}
	
	void create();//创建矩阵
	void Print();//输出矩阵

	int rank();//求矩阵的秩
	bool judgeinv();//判断矩阵是否可逆
	void copy(Mat &a);//复制函数
};

这里我们先写出一个复制函数:

void Mat::copy(Mat& a)//复制函数
{
	a.m = m; a.n = n;
	for (int i = 1; i <= m; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			a.mat[i][j] = mat[i][j];
		}
	}
}

rank()函数求解矩阵的秩:

int Mat::rank()//求矩阵的秩
{
	Mat a(m, n);//重新复制一个,不破坏原有数据
	copy(a);
	int amount = 0;  //非零行的数目
	for (int i = 1; i <= m; i++)
	{
		//寻找第 i 行和第 i 行以下的行中,列下标最小的不为 0 的元素
		int row, col; //不为 0 的元素的行下标 row 和列下标 col
		for (col = i; col <= n; col++)
		{
			bool flag = false;
			for (row = i; row <= m; row++)
			{
				if (fabs(mat[row][col]) > 1e-10) //满足这个条件时,认为这个元素不为 0
				{
					flag = true;
					break;
				}
			}
			if (flag) break;
		}
		if (row <= m && col <= n)//找到不为 0 的元素
		{
			for (int j = col; j <= n; j++)//从第 col 个元素交换即可,因为前面的元素都为0
			{//使用mat[0][j]作为中间变量交换元素
				mat[0][j] = mat[i][j]; mat[i][j] = mat[row][j]; mat[row][j] = mat[0][j];
			}
			double a;//倍数
			for (int j = i + 1; j <= m; j++)
			{
				a = -mat[j][col] / mat[i][col];
				for (int k = col; k <= n; k++)
				{//第 i 行 a 倍加到第 j 行,每行从第col个数开始,因为前面的数都是0
					mat[j][k] += a * mat[i][k];
				}
			}
			amount++; //每进行一次,就说明第i行元素已经固定并且不全为0,秩加1
		}
		else //没有找到不为 0 的元素,退出循环即可,因为秩数不必继续增加了
		{
			break;
		}
	}
	return amount;
}

judgeinv()函数判断是否可逆:

bool Mat::judgeinv()
{
	if (m != n)//不是方阵,不可逆
		return false;
	if (rank() == n)
		return true;
	else
		return false;
}

有空试试吧!附上完整代码:

#include<iostream>
#include <cmath>
using namespace std;
#define N 10
class Mat
{
public:
	int m = 1, n = 1; //行数和列数
	double mat[N][N] = { 0 };  //矩阵开始的元素

	Mat() {}
	Mat(int mm, int nn)
	{
		m = mm; n = nn;
	}

	void create();//创建矩阵
	void Print();//输出矩阵

	int rank();//求矩阵的秩
	bool judgeinv();//判断矩阵是否可逆
	void copy(Mat& a);//复制函数
};

void Mat::create()
{
	for (int i = 1; i <= m; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			cin >> mat[i][j];
		}
	}
}
void Mat::Print()
{
	for (int i = 1; i <= m; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			cout << mat[i][j] << "\t";
		}
		cout << endl;
	}
}
void Mat::copy(Mat& a)//复制函数
{
	a.m = m; a.n = n;
	for (int i = 1; i <= m; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			a.mat[i][j] = mat[i][j];
		}
	}
}

int Mat::rank()//求矩阵的秩
{
	Mat a(m, n);//重新复制一个,不破坏原有数据
	copy(a);
	int amount = 0;  //非零行的数目
	for (int i = 1; i <= m; i++)
	{
		//寻找第 i 行和第 i 行以下的行中,列下标最小的不为 0 的元素
		int row, col; //不为 0 的元素的行下标 row 和列下标 col
		for (col = i; col <= n; col++)
		{
			bool flag = false;
			for (row = i; row <= m; row++)
			{
				if (fabs(mat[row][col]) > 1e-10) //满足这个条件时,认为这个元素不为 0
				{
					flag = true;
					break;
				}
			}
			if (flag) break;
		}
		if (row <= m && col <= n)//找到不为 0 的元素
		{
			for (int j = col; j <= n; j++)//从第 col 个元素交换即可,因为前面的元素都为0
			{//使用mat[0][j]作为中间变量交换元素
				mat[0][j] = mat[i][j]; mat[i][j] = mat[row][j]; mat[row][j] = mat[0][j];
			}
			double a;//倍数
			for (int j = i + 1; j <= m; j++)
			{
				a = -mat[j][col] / mat[i][col];
				for (int k = col; k <= n; k++)
				{//第 i 行 a 倍加到第 j 行,每行从第col个数开始,因为前面的数都是0
					mat[j][k] += a * mat[i][k];
				}
			}
			amount++; //每进行一次,就说明第i行元素已经固定并且不全为0,秩加1
		}
		else //没有找到不为 0 的元素,退出循环即可,因为秩数不必继续增加了
		{
			break;
		}
	}
	return amount;
}
bool Mat::judgeinv()
{
	if (m != n)//不是方阵,不可逆
		return false;
	if (rank() == n)
		return true;
	else
		return false;
}

int main()
{
	Mat a(3, 3), b(4, 4);
	cout << "请输入 " << a.m << "*" << a.n << " 的矩阵:" << endl;
	a.create();
	if (a.judgeinv())
		cout << "可逆!" << endl;
	else
		cout << "不可逆!" << endl;
	cout << "请输入 " << b.m << "*" << b.n << " 的矩阵:" << endl;
	b.create();
	if (b.judgeinv())
		cout << "可逆!" << endl;
	else
		cout << "不可逆!" << endl;
	return 0;
}

下一次博客我会给大家介绍另外一种判断矩阵是否可逆的方法

若有不足之处,欢迎大家指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值