一 如何绘制多个图像?
import matplotlib.pyplot as plt
import random
for i in range(1,10,1):
plt.subplot(3,3,i)
j=random.randint(1,100)#从前100个图像中随机挑选九个
plt.imshow(train_images[j])
#plt.imshow(train_images[i], cmap=plt.get_cmap('gray')) 显示灰度图片
plt.title(train_labels[j]) #显示某个图像以及其label
plt.axis('off') #不展示坐标
plt.show()
使用的数据集为mnist,Keras中内置mnist数据集,获取该数据集的代码为
from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
测试集共6000张,图像大小为28*28,效果如下 。
二 如何控制多个图像之间的距离?
我们看到上述图像紧挨在一起,影响视觉效果,可以使用plt.subplots_adjust来调整子图像之间的距离,具体参数(left=None, bottom=None, right=None, top=None, wspace=None,hspace=None)
可以根据自己需求修改参数值。
top、bottom、left、right:整个图距离上下左右边框的距离
wspace:调整子图的横向间距
hspace:调整子图的纵向间距
添加之后效果如下。