使用pyplot绘制多个图像

这篇博客介绍了如何利用matplotlib在Python中绘制多个图像,并通过`plt.subplots_adjust`调整图像间的距离。示例代码展示了从mnist数据集中随机选取并显示9个图像,每个图像占据3x3布局中的一个子图,同时关闭了坐标轴显示。通过调整`hspace`和`wspace`参数,可以改善图像的视觉效果,使得图像之间保持适当的距离。
摘要由CSDN通过智能技术生成

一  如何绘制多个图像?

import matplotlib.pyplot as plt
import random
for i in range(1,10,1):
    plt.subplot(3,3,i)
    j=random.randint(1,100)#从前100个图像中随机挑选九个
    plt.imshow(train_images[j])
    #plt.imshow(train_images[i], cmap=plt.get_cmap('gray'))  显示灰度图片
    plt.title(train_labels[j])   #显示某个图像以及其label 
    plt.axis('off')  #不展示坐标    
plt.show()

使用的数据集为mnist,Keras中内置mnist数据集,获取该数据集的代码为

from tensorflow.keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

 

 

测试集共6000张,图像大小为28*28,效果如下 。

二  如何控制多个图像之间的距离?

 我们看到上述图像紧挨在一起,影响视觉效果,可以使用plt.subplots_adjust来调整子图像之间的距离,具体参数(left=None, bottom=None, right=None, top=None, wspace=None,hspace=None)

可以根据自己需求修改参数值。
top、bottom、left、right:整个图距离上下左右边框的距离
wspace:调整子图的横向间距
hspace:调整子图的纵向间距

添加之后效果如下。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值