把问题抽象成树问题。
要注意的两个点:
1. 在下次选取过程中不能重复。即 不能有2,2 3,3 等一个数出现多次(start从i+1开始的原因)
2. 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠start。 如果没有start 结果会有重复的。 这里的重复指的是4,2 2,4这样的重复。
可以自己先一步一步的尝试。
比如 下面是start不从i+1开始的代码
class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> combine(int n, int k) {
dfs(n,k,new ArrayList<>(),1);
return res;
}
public void dfs(int n,int k,List<Integer> path,int start){
if(path.size() == k){
res.add(new ArrayList<>(path));
return;
}
for(int i = start;i <=n ;i++){
path.add(i);
dfs(n,k,path,i);
path.remove(path.size() - 1);
}
}
}
明显有2,2 1,1 这种组合 是不合理的。
下面是没有考虑从start开始的代码
class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> combine(int n, int k) {
dfs(n,k,new ArrayList<>());
return res;
}
public void dfs(int n,int k,List<Integer> path){
if(path.size() == k){
res.add(new ArrayList<>(path));
return;
}
for(int i = 1;i <=n ;i++){
path.add(i);
dfs(n,k,path);
path.remove(path.size() - 1);
}
}
}
很明显,他还比上面的结果多包含了像3,4 4,3这样的重复元组。
i从start开始的目的从每一层的第 2 个结点开始,都不能再搜索产生同一层结点已经使用过的 candidate 里的元素。
正确代码
class Solution {
List<List<Integer>> res = new ArrayList<>();
public List<List<Integer>> combine(int n, int k) {
dfs(n,k,new ArrayList<>(),1);
return res;
}
public void dfs(int n,int k,List<Integer> path,int start){
if(path.size() == k){
res.add(new ArrayList<>(path));
return;
}
for(int i = start;i <=n ;i++){
path.add(i);
dfs(n,k,path,i+1);
path.remove(path.size() - 1);
}
}
}
剪枝优化
来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。
这么说有点抽象,如图所示:
图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。
所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。
注意代码中i,就是for循环里选择的起始位置。
接下来看一下优化过程如下:
已经选择的元素个数:path.size();
还需要的元素个数为: k - path.size();
在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
从2开始搜索都是合理的,可以是组合[2, 3, 4]。
这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。
所以优化之后的for循环是:
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置
(注意索引是从1开始的不是从0开始的)