目录
一、栈
1.概念
栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端
称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作叫做出栈。出数据也在栈顶。
2.实现
2.1 Stack.h
#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int STDataType;
typedef struct Stack
{
STDataType* a;
int top; //栈顶
int capacity; //容量,方便增容
}Stack;
// 初始化栈
void StackInit(Stack* pst);
// 销毁栈
void StackDestroy(Stack* pst);
// 入栈
void StackPush(Stack* pst, STDataType data);
// 出栈
void StackPop(Stack* pst);
// 获取栈顶元素
STDataType StackTop(Stack* pst);
// 获取栈中有效元素个数
int StackSize(Stack* pst);
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
bool StackEmpty(Stack* pst);
2.2 Stack.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
// 初始化栈
void StackInit(Stack* pst)
{
assert(pst);
pst->a = (STDataType*)malloc(sizeof(STDataType) * 4);
pst->top = 0;
pst->capacity = 4;
}
// 销毁栈
void StackDestroy(Stack* pst)
{
assert(pst);
free(pst->a);
pst->a = NULL;
pst->top = 0;
pst->capacity = 0;
}
// 入栈
void StackPush(Stack* pst, STDataType data)
{
assert(pst);
//增容
if (pst->capacity == pst->top)
{
int newCapcity = pst->capacity == 0 ? 4 : 2 * pst->capacity;
STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * newCapcity);
if (tmp == NULL)
{
perror("StackPush");
exit(-1);
}
pst->a = tmp;
pst->capacity *= 2;
}
pst->a[pst->top] = data;
pst->top++;
}
// 出栈
void StackPop(Stack* pst)
{
assert(pst);
assert(!StackEmpty(pst));
pst->top--;
}
// 获取栈顶元素
STDataType StackTop(Stack* pst)
{
assert(pst);
assert(!StackEmpty(pst));
return pst->a[pst->top - 1];
}
// 获取栈中有效元素个数
int StackSize(Stack* pst)
{
assert(pst);
return pst->top;
}
// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0
bool StackEmpty(Stack* pst)
{
assert(pst);
return pst->top == 0;
}
二、队列
1.概念
队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出
FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头。
2.实现
2.1 Queue.h
#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int QDataType;
typedef struct QueueNode
{
QDataType data;
struct QueueNode* next;
}QueueNode;
typedef struct Queue
{
QueueNode* head;
QueueNode* tail;
}Queue;
// 初始化队列
void QueueInit(Queue* q);
// 销毁队列
void QueueDestroy(Queue* q);
// 队尾入队列
void QueuePush(Queue* q, QDataType data);
// 队头出队列
void QueuePop(Queue* q);
// 获取队列头部元素
QDataType QueueFront(Queue* q);
// 获取队列队尾元素
QDataType QueueBack(Queue* q);
// 获取队列中有效元素个数
int QueueSize(Queue* q);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0
bool QueueEmpty(Queue* q);
2.2 Queue.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"
// 初始化队列
void QueueInit(Queue* q)
{
assert(q);
q->head = q->tail= NULL;
}
// 销毁队列
void QueueDestroy(Queue* q)
{
assert(q);
QueueNode* cur = q->head;
while (cur)
{
QueueNode* next = cur->next;
free(cur);
cur = next;
}
q->head = q->tail = NULL;
}
// 队尾入队列
void QueuePush(Queue* q, QDataType data)
{
assert(q);
QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));
{
if (newnode == NULL)
{
perror("malloc fail");
exit(-1);
}
}
newnode->data = data;
newnode->next = NULL;
if (q->head == NULL)
{
q->head = q->tail = newnode;
}
else
{
q->tail->next = newnode;
q->tail = newnode;
}
}
// 队头出队列
void QueuePop(Queue* q)
{
assert(q);
assert(!QueueEmpty(q));
if (q->head == q->tail)
{
free(q->head);
q->head = q->tail = NULL;
}
else
{
QueueNode* next = q->head->next;
free(q->head);
q->head = next;
}
}
// 获取队列头部元素
QDataType QueueFront(Queue* q)
{
assert(q);
assert(!QueueEmpty(q));
return q->head->data;
}
// 获取队列队尾元素
QDataType QueueBack(Queue* q)
{
assert(q);
assert(!QueueEmpty(q));
return q->tail->data;
}
// 获取队列中有效元素个数
int QueueSize(Queue* q)
{
assert(q);
QueueNode* cur = q->head;
int size = 0;
while (cur)
{
size++;
cur = cur->next;
}
return size;
}
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0
bool QueueEmpty(Queue* q)
{
assert(q);
return q->head == NULL && q->tail == NULL;
}
三、循环队列
1.实现
1.1 myCircularQueue.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
typedef struct {
int* a;
int n;
int front;
int tail;
} MyCircularQueue;
//声明
//初始化循环队列
MyCircularQueue* myCircularQueueCreate(int k);
//插入数据
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value);
//删除数据
bool myCircularQueueDeQueue(MyCircularQueue* obj);
//获取队首数据
int myCircularQueueFront(MyCircularQueue* obj);
//获取队尾数据
int myCircularQueueTail(MyCircularQueue* obj);
//检查循环队列是否为空
bool myCircularQueueIsEmpty(MyCircularQueue* obj);
//检查循环队列是否为满
bool myCircularQueueIsFull(MyCircularQueue* obj);
//销毁循环队列
void myCircularQueueFree(MyCircularQueue* obj);
1.2 myCircularQueue.c
#include"myCircularQueue.h"
MyCircularQueue* myCircularQueueCreate(int k) {
MyCircularQueue* obj = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
obj->a = (int*)malloc(sizeof(int) * ( k + 1));
obj->n = k + 1;
obj->front = obj->tail = 0;
return obj;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
if(myCircularQueueIsFull(obj))
{
return false;
}
obj->a[obj->tail] = value;
obj->tail++;
obj->tail %= obj->n;
return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
{
return false;
}
obj->front++;
obj->front %= obj->n;
return true;
}
int myCircularQueueFront(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
{
return -1;
}
return obj->a[obj->front];
}
int myCircularQueueRear(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
{
return -1;
}
return obj->a[(obj->tail - 1 + obj->n) % (obj->n)];
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
return obj->front == obj->tail;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) {
return (obj->tail + 1) % (obj->n) == obj->front;
}
void myCircularQueueFree(MyCircularQueue* obj) {
free(obj->a);
free(obj);
}