目录
一、几种主要排序算法的介绍
排序的概念
排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次
序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排
序算法是稳定的;否则称为不稳定的。
内部排序:数据元素全部放在内存中的排序。
外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序
1.插入排序
基本思想:
把待排序的记录按其关键码值的大小逐个插入到一
个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。
总结:
- 元素集合越接近有序,直接插入排序算法的时间效率越高
- 时间复杂度:O(N^2)
- 空间复杂度:O(1),它是一种稳定的排序算法
- 稳定性:稳定
2.希尔排序
基本思想:
先选定一个整数,把待排序文件中所有记录分成个
组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工
作。当到达=1时,所有记录在统一组内排好序。
总结:
- 希尔排序是对直接插入排序的优化。
- 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就
会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。 - 希尔排序的时间复杂度不好计算,需要进行推导,推导出来平均时间复杂度: O(N1.3—N2)
- 稳定性:不稳定
3.选择排序
基本思想:
每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的
数据元素排完 。
总结:
- 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:不稳定
4.堆排序
基本思想:
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是
通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。
总结:
- 堆排序使用堆来选数,效率就高了很多。
- 时间复杂度:O(N*logN)
- 空间复杂度:O(1)
- 稳定性:不稳定
5.冒泡排序
基本思想:
所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,
总结:
- 冒泡排序是一种非常容易理解的排序
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:稳定
6.快速排序
基本思想:
任取待排序元素序列中
的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右
子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
快速排序优化:
- 三数取中法选key
- 递归到小的子区间时,可以考虑使用插入排序
总结:
快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序 - 时间复杂度:O(N*logN)
- 空间复杂度:O(logN)
- 稳定性:不稳定
7.归并排序
基本思想:
归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and
Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有
序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
总结:
- 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
- 时间复杂度:O(N*logN)
- 空间复杂度:O(N)
- 稳定性:稳定
8.计数排序
基本思想:
计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:
- 统计相同元素出现次数
- 根据统计的结果将序列回收到原来的序列中
总结: - 计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。
- 时间复杂度:O(MAX(N,范围))
- 空间复杂度:O(范围)
- 稳定性:稳定
二、排序算法的实现
1.Sort.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Sort.h"
//打印函数
void Print(int* a, int n)
{
for (int i = 0;i < n;i++)
{
printf("%d ", a[i]);
}
printf("\n");
}
// 插入排序
void InsertSort(int* a, int n)
{
//[0, end] ,tmp = a[end + 1];
for (int i = 0; i < n - 1;i++)
{
int end = i;
int tmp = a[end + 1];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + 1] = a[end];
end--;
}
else
{
break;
}
}
a[end + 1] = tmp;
}
}
// 希尔排序
void ShellSort(int* a, int n)
{
int gap = n;
while (gap > 1)
{
gap = gap / 3 + 1;
for (int i = 0; i < n - gap;i++)
{
int end = i;
int tmp = a[end + gap];
while (end >= 0)
{
if (a[end] > tmp)
{
a[end + gap] = a[end];
end -= gap;
}
else
{
break;
}
}
a[end + gap] = tmp;
}
printf("gap->%d = ",gap);
Print(a, n);
printf("\n");
}
}
//交换
void Swap(int* p1, int* p2)
{
int tmp = *p1;
*p1 = *p2;
*p2 = tmp;
}
// 选择排序
void SelectSort(int* a, int n)
{
int left = 0;
int right = n - 1;
while (left < right)
{
int minindex = left;
int maxindex = left;
for (int i = left;i <= right; i++)
{
if (a[i] < a[minindex])
{
minindex = i;
}
if (a[i] > a[maxindex])
{
maxindex = i;
}
}
Swap(&a[minindex], &a[left]);
if (maxindex == left)
{
maxindex = minindex;
}
Swap(&a[maxindex], &a[right]);
left++;
right--;
}
}
// 堆排序(升序)
//向下调整(大堆)
void AdjustDwon(int* a, int n, int root)
{
int parent = root;
int child = 2 * parent + 1;
while (child < n)
{
if (child + 1 < n && a[child + 1] > a[child])
{
child++;
}
if (a[child] > a[parent])
{
Swap(&a[child], &a[parent]);
}
else
{
break;
}
parent = child;
child = 2 * parent + 1;
}
}
void HeapSort(int* a, int n)
{
//建堆(大堆)
for (int i = (n - 2) / 2; i >= 0;i--)
{
AdjustDwon(a, n, i);
}
int end = n;
while (end > 0)
{
Swap(&a[0], &a[end - 1]);
end--;
AdjustDwon(a, end, 0);
}
}
// 冒泡排序
void BubbleSort(int* a, int n)
{
for (int i = 0; i < n; i++)
{
int change = 0;
for (int j = 1; j < n - i; j++)
{
if (a[j - 1] > a[j])
{
Swap(&a[j - 1], &a[j]);
change = 1;
}
}
if (change == 0)
{
break;
}
}
}
//三数选中key优化
int MiddleKeySelect(int* a ,int left,int right)
{
int middle = (left + right) / 2;
if (a[left] < a[middle])
{
if (a[middle] < a[right])
{
return middle;
}
else
{
if (a[left] < a[right])
{
return right;
}
else
{
return left;
}
}
}
else
{
if (a[left] < a[right])
{
return left;
}
else
{
if (a[middle] < a[right])
{
return right;
}
else
{
return middle;
}
}
}
}
// 快速排序hoare版本
int PartSort1(int* a, int left, int right)
{
int middle = MiddleKeySelect(a, left, right);
Swap(&a[left], &a[middle]);
int keyi = left;
while (left < right)
{
while (left < right && a[right] >= a[keyi])
{
right--;
}
while (left < right && a[left] <= a[keyi])
{
left++;
}
Swap(&a[left], &a[right]);
}
Swap(&a[keyi], &a[left]);
return left;
}
// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{
int key = a[left];
int hole = left;
while (left < right)
{
while (left < right && a[right] >= key)
{
right--;
}
a[hole] = a[right];
hole = right;
while (left < right && a[left] <= key)
{
left++;
}
a[hole] = a[left];
hole = left;
}
a[hole] = key;
return hole;
}
// 快速排序前后指针法
int PartSort3(int* a, int left, int right)
{
int prev = left;
int cur = left + 1;
int keyi = left;
while (cur <= right)
{
if (a[cur] < a[keyi] && ++prev != cur)
{
Swap(&a[prev], &a[cur]);
}
cur++;
}
Swap(&a[keyi], &a[prev]);
return prev;
}
// 快速排序递归实现
void QuickSort(int* a, int begin, int end)
{
if (begin >= end)
{
return;
}
if (end - begin < 8)
{
InsertSort(a + begin, end - begin + 1);
}
else
{
int keyi = PartSort1(a, begin, end);
QuickSort(a, begin, keyi - 1);
QuickSort(a, keyi + 1, end);
}
}
// 快速排序非递归实现
void QuickSortNonR(int* a, int left, int right)
{
Stack st;
StackInit(&st);
StackPush(&st, right);
StackPush(&st, left);
while (!StackEmpty(&st))
{
int begin = StackTop(&st);
StackPop(&st);
int end = StackTop(&st);
StackPop(&st);
int keyi = PartSort1(a, begin, end);
if (keyi + 1 < end)
{
StackPush(&st, end);
StackPush(&st, keyi + 1);
}
if(begin < keyi - 1)
{
StackPush(&st, keyi - 1);
StackPush(&st, begin);
}
}
StackDestroy(&st);
}
// 归并排序递归实现
void _MergeSort(int* a, int left, int right, int* tmp)
{
if (right <= left)
{
return;
}
int middle = (left + right) / 2;
_MergeSort(a, left, middle, tmp);
_MergeSort(a, middle + 1, right, tmp);
int begin1 = left;
int end1 = middle;
int begin2 = middle + 1;
int end2 = right;
int begin = left;
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[begin++] = a[begin1++];
}
else
{
tmp[begin++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[begin++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[begin++] = a[begin2++];
}
memcpy(a + left, tmp + left, (right - left + 1) * sizeof(int));
}
void MergeSort(int* a, int n)
{
int* tmp = (int*)malloc(n * sizeof(int));
if (tmp == NULL)
{
perror("malloc fail");
}
int left = 0;
int right = n - 1;
_MergeSort(a, left, right, tmp);
free(tmp);
tmp = NULL;
}
// 归并排序非递归实现
void MergeSortNonR(int* a, int n)
{
int* tmp = (int*)malloc(n * sizeof(int));
if (tmp == NULL)
{
perror("malloc fail");
}
int gap = 1;
//[i , i + gap - 1]
//[i + gap , i + 2 * gap - 1]
while (gap < n)
{
for (int i = 0; i < n; i += 2 * gap)
{
int begin1 = i;
int end1 = i + gap - 1;
int begin2 = i + gap;
int end2 = i + 2 * gap - 1;
int j = i;
if (end1 >= n)
{
break;
}
if (end2 >= n)
{
end2 = n - 1;
}
while (begin1 <= end1 && begin2 <= end2)
{
if (a[begin1] <= a[begin2])
{
tmp[j++] = a[begin1++];
}
else
{
tmp[j++] = a[begin2++];
}
}
while (begin1 <= end1)
{
tmp[j++] = a[begin1++];
}
while (begin2 <= end2)
{
tmp[j++] = a[begin2++];
}
memcpy(a + i, tmp + i, (end2 - i + 1) * sizeof(int));
}
gap *= 2;
}
free(tmp);
}
// 计数排序
void CountSort(int* a, int n)
{
int max = a[0];
int min = a[0];
int j = 0;
for (int i = 0; i < n; i++)
{
if (a[i] < min)
{
min = a[i];
}
if (a[i] > max)
{
max = a[i];
}
}
int range = max - min + 1;
int* count = (int*)calloc(range, sizeof(int));
if (count == NULL)
{
perror("calloc fail");
exit(-1);
}
for (int i = 0; i < n; i++)
{
count[a[i] - min]++;
}
for (int i = 0; i < range;i++)
{
while (count[i]--)
{
a[j++] = i + min;
}
}
free(count);
}
2.test.c
#define _CRT_SECURE_NO_WARNINGS 1
#include"Sort.h"
InsertSortTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
printf("\n原数组:\n");
Print(a, sz);
InsertSort(a, sz);
printf("\n插入排序:\n");
Print(a, sz);
}
ShellSortTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
printf("\n希尔排序:\n");
ShellSort(a, sz);
}
SelectSortTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
SelectSort(a, sz);
printf("\n选择排序:\n");
Print(a, sz);
}
HeapSortTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
HeapSort(a, sz);
printf("\n堆排序:\n");
Print(a, sz);
}
BubbleSortTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
BubbleSort(a, sz);
printf("\n冒泡排序:\n");
Print(a, sz);
}
QuickSortTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
QuickSort(a, 0, sz - 1);
printf("\n快速排序递归:\n");
Print(a, sz);
}
QuickSortNonRTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
QuickSortNonR(a, 0, sz - 1);
printf("\n快速排序非递归:\n");
Print(a, sz);
}
MergeSortTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
MergeSort(a, sz);
printf("\n归并排序递归:\n");
Print(a, sz);
}
MergeSortNonRTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };;
int sz = sizeof(a) / sizeof(a[0]);
MergeSortNonR(a, sz);
printf("\n归并排序非递归:\n");
Print(a, sz);
}
CountSortTest()
{
int a[] = { 10,9,8,7,6,5,4,3,2,1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10,10,9 };
int sz = sizeof(a) / sizeof(a[0]);
CountSort(a, sz);
printf("\n计数排序:\n");
Print(a, sz);
}
int main()
{
InsertSortTest();
ShellSortTest();
SelectSortTest();
HeapSortTest();
BubbleSortTest();
QuickSortTest();
QuickSortNonRTest();
MergeSortTest();
MergeSortNonRTest();
CountSortTest();
return 0;
}
三、排序算法复杂度及稳定性分析