Kurskal算法求最小生成树 POJ 1751

17 篇文章 0 订阅

时间复杂度mlogm 先给每条边按边长排序,然后每次都选取最小的边,用并查集判断他们是否联通,若不连通则相连 (否则连接后成环) ,连成n-1条边后退出算法 适用于稀疏图,prim适用于稠密图

模板

#include<cstdio>//kurskal算法 时间复杂度mlogm 先给每条边按边长排序,然后每次都选取最小的边,用并查集判断他们是否联通,若不连通则相连 (否则连接后成环) 
#include<algorithm>//适用于稀疏图,prim适用于稠密图 
using namespace std;
const int M=1e6+10,N=1e6+10;
struct node{
	int x,y,l;//x表示起点,y表示终点,l表示边长 
}edge[M]; 
int fa[N],n,m;//并查集 节点数 边数 
inline int find(int x){
	return fa[x]==x ? x : fa[x]=find(fa[x]);
} 
inline void merge(int x,int y){
	fa[find(x)]=find(y);
}
bool cmp(node a,node b){
	return a.l<b.l;
}
int kurskal(){
	sort(edge,edge+m,cmp);
	int cnt=0;//记录已连接的边 
	int sum=0;//记录权值 
	for(int i=0;i<m;i++){
		int fx=find(edge[i].x);
		int fy=find(edge[i].y); 
		if(fx!=fy){
			merge(fx,fy);
			sum+=edge[i].l;
			if(cnt>=n-1)	break;
		}
	}
	return sum;
}
int main(){
	return 0;
}

例题

http://poj.org/problem?id=1751

这题用prim算法就不能用链式前向星,因为边太多了,爆内存

而且这题最坑的是给出的已联通的边有很多废边,卡你时间

#include<cstdio>//kurskal算法 时间复杂度mlogm 先给每条边按边长排序,然后每次都选取最小的边,用并查集判断他们是否联通,若不连通则相连 (否则连接后成环) 
#include<algorithm>//适用于稀疏图,prim适用于稠密图 
using namespace std;
const int M=3e5+500,N=1e3+10;
struct node{
	int x,y,l;//x表示起点,y表示终点,l表示边长的平方 
}edge[M]; 
int fa[N],n,m,cnt;//并查集 节点数 边数 edge下标 
struct Dot{
	int x,y;
}dot[N];
inline void init(){//初始化并查集 
	for(int i=1;i<=n;i++){
		fa[i]=i;	
	}
}
inline int read(){
	int s=0,w=1;char c=getchar();while(c<'0' || c>'9'){
		if(c=='-')	w*=-1;	c=getchar();
	}while(c>='0' && c<='9'){
		s=(s<<3)+(s<<1)+c-'0';c=getchar();
	}return s*w;
}
inline int find(int x){
	return fa[x]==x ? x : fa[x]=find(fa[x]);
} 
inline void merge(int x,int y){
	fa[find(x)]=find(y);
}
bool cmp(node a,node b){
	return a.l<b.l;
}
int cal(int x1,int y1,int x2,int y2){
	return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
}
void kurskal(){
	int cnt_=0;//记录已连接的边  第二易错点 陷阱:不要让cnt_=m,题目中给的已连接的边不一定全部都是最小生成树上的边! 
	for(int i=0;i<cnt;i++){
		int fx=find(edge[i].x);
		int fy=find(edge[i].y); 
		if(fx!=fy){
			merge(fx,fy);
			printf("%d %d\n",edge[i].x,edge[i].y);
			if(cnt_++>=n-1)	break;	
		}
	}
}
int main(){
	n=read();
	init();//这个函数与n有关,请务必放在输入n后!!! 
	for(int i=1;i<=n;i++){
		dot[i].x=read(),dot[i].y=read();
	}
	m=read();
	for(int i=1;i<=m;i++){
		int a=read(),b=read();
		merge(a,b);
	}
	for(int i=1;i<=n;i++)
		for(int j=i+1;j<=n;j++)
			if(find(i)!=find(j))//最大易错点:他俩不连通的时候再建边,不要上来就建边,否则会TEL!这说明给的数据中m条边有大量废边卡时间,一定要把他们剪掉!!! 
				edge[cnt].x=i,edge[cnt].y=j,edge[cnt++].l=cal(dot[i].x,dot[i].y,dot[j].x,dot[j].y);//剪枝建边 
	sort(edge,edge+cnt,cmp);//易错:sort是左闭右开!!!所以不要写cnt-1 
	kurskal();
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值