自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(65)
  • 收藏
  • 关注

原创 西电《英美文化》期末考试答案

西电《英美文化》期末考试答案

2025-06-10 19:36:43 85 1

原创 西电雨课堂《知识产权法》课后作业答案

西电雨课堂《知识产权法》课后作业答案一览

2025-05-03 00:05:49 992 5

原创 西电雨课堂《知识产权法》课后作业答案3.2

2025-05-02 23:31:05 114

原创 西电雨课堂《知识产权法》课后作业答案3.1

2025-05-02 23:30:33 110

原创 西电雨课堂《知识产权法》课后作业答案2.10

2025-05-02 23:29:57 101

原创 西电雨课堂《知识产权法》课后作业答案2.9

2025-05-02 23:29:21 107

原创 西电雨课堂《知识产权法》课后作业答案2.8

2025-05-02 23:28:44 92

原创 西电雨课堂《知识产权法》课后作业答案2.7

2025-05-02 23:28:12 65

原创 西电雨课堂《知识产权法》课后作业答案2.7

2025-05-02 23:26:48 97

原创 西电雨课堂《知识产权法》课后作业答案2.6

2025-05-02 23:26:05 115

原创 西电雨课堂《知识产权法》课后作业答案2.5

2025-05-02 21:26:43 109

原创 西电雨课堂《知识产权法》课后作业答案2.4

2025-05-02 21:23:20 111

原创 西电雨课堂《知识产权法》课后作业答案2.3

2025-05-02 21:22:42 97

原创 西电雨课堂《知识产权法》课后作业答案2.2

2025-05-02 21:21:52 109

原创 西电雨课堂《知识产权法》课后作业答案2.1

2025-05-02 21:20:35 122

原创 西电雨课堂《知识产权法》课后作业答案1.2

2025-05-02 21:17:39 115

原创 西电雨课堂《知识产权法》课后作业答案1.1

2025-05-02 20:58:37 140

原创 关于华为昇腾平台利用conda创建环境失败的解决方法分享

由于华为的昇腾910A的conda不能访问conda的国外主站,因此利用conda创建环境时候会报http链接错误,导致环境创建不成功,想配置环境只能“偷”别人的环境,这好吗?如果你想创建特定的python版本的环境,比如python3.11,但是conda create -n python3.11 python=3.11命令不太好使,这个时候就需要自己在。用我上面的命令创建3.6-3.11都没问题,但3.12和3.13就不行了,可能是版本太新了吧,我知道你很急,但是你先别急,且听我细细道来。

2025-04-17 17:13:03 389

原创 华为真的遥遥领先了吗?记录华为Ascend卡对于pytorch中aten::isin.Tensor_Tensor_out算子不支持的问题(主要是由于调用torch.isin()方法造成的)

在使用华为的 ModelArts 平台时,我注意到一个关键性能瓶颈,即数据在从 NPU(神经处理单元)传输到 CPU 后,仍然依赖于 CPU 进行计算。这一流程对于大规模模型的推理效率构成了严重影响,特别是在处理复杂任务时。我以 Qwen2.5-Coder-7B 为例,尝试实现冒泡排序算法,结果耗时超过 10 小时,所以华为真的遥遥领先了吗?

2024-10-19 19:35:11 14246 4

原创 介绍一种能自动截图的python代码

博主在做毕业设计的时候总是需要截取自己做的网页的图,但是用各种截图方法(QQ、微信、Ctrl+Alt+S)总是很不方便,因此我就想能不能写一个代码,当我按压键盘某一个键的时候能触发这个截图功能?说干就干,我做了如下思考。编不下去了,其实我没有思考,就直接写了,有一部分也是copy别人的,我只是在上面做了改动,效果是,运行代码后就能保存Svg格式的图和png格式的图。答:用while循环,一直监听是否触发某个事件,一旦触发就执行代码。问:怎么保证我一点击的时候就截图,不点击就不截图呢?

2024-05-28 14:40:49 11712

原创 基于深度学习的车牌识别

如果你认为车牌只是车子的‘名字’,那么是时候让你见识一下,当科技赋予它‘超能力’时会发生什么?

2024-04-20 14:16:45 12963 3

原创 微信自动发消息

一种轻量化的微信发送消息的代码

2024-03-31 13:39:36 12111

原创 Imagenet2012的1000个类别

Imagenet2012的1000个类别

2024-01-13 21:52:44 12314

原创 解决ModuleNotFoundError: No module named ‘yaml‘

报错:ModuleNotFoundError: No module named 'yaml'

2023-11-03 18:27:51 18467

原创 如何把利用paddlepaddle导出的json文件转化为yolo或者voc文件

这两天想偷懒,想让模型先在数据上标一遍,然后我再做修正,主要是图个省事。由于我们的业务主要是利用paddle,模型也是基于paddle推理的,因此即便我对paddle有一万个吐槽但也不得不用它。但在利用paddle保存推理结果文件时,遇到了一个大问题:就是paddle推理出来的所有数据都在同一个json文件,并且导入labelimg中也不能正常的显示到标注的框,不能对数据进行矫正。因此我就想着在代码中间能不能修改某些内容。

2023-09-19 14:26:57 42600

原创 5. 自动求导

⑧ 即使构建函数的计算图需要通过Python控制流(例如,条件、循环或任意函数调用),仍然可以计算得到的变量的梯度。⑥ 在深度学习中,目的不是计算微分矩阵,而是批量中每个样本单独计算的偏导数之和。② 在外面计算y关于x的梯度之前,需要一个地方来存储梯度。④ 通过调用反向传播函数来自动计算y关于x每个分量的梯度。① 例子1是一个线性回归的例子,如下图所示。① b是之前计算的结果,是一个已知的值。⑦ 将某些计算移动到记录的计算图之外。⑤ 计算x的另一个函数。

2023-09-13 11:42:22 45905

原创 小工具——筛选图像小工具

首先要选择两个文件夹,一个用来导入数据,另外一个用来保存数据。导入文件夹,文件夹里面有大量图像,点击键盘右键可以切换到下一张,左键上一张,点击空格可以把这个图像保存到另外一个文件夹中。不过到最后一张的时候可能回异常退出,不过不影响使用所以我就没进行改进了。最近在公司手动筛图片,需要将某些含有检测目标的图像手动筛选出来用于做新模型的测试。我最开始是两个文件夹,来回复制粘贴,后来感觉这种效率太低了,就随手写了一个图像筛查小工具。这里的操作是剪切操作,并非复制操作。随便文件夹是保存的文件。点击3选择保存文件夹。

2023-09-08 14:10:23 49196

原创 一键让你使用录屏

最近在做项目,有时候需要录屏,但是我的操作又很慢,常常就是动辄上分钟计,这哪个评委老师受得了啊。建议把代码放在桌面,这样录的视频也在桌面,便于查找。视频的名字叫test.mp4,录制完成后,按英文状态下的esc或者q键结束。

2023-09-06 12:47:06 50345

原创 三秒教你搞定利用python发送邮件

我之前利用python统计了班级没有交作业的同学,并且一键给他们发邮件。收到了很多人的私信,这里我给大家分享一下如何利用python发送文件。至于授权码的获取方式,可自行搜索,网上教程一大堆,我就不赘述了。

2023-09-06 12:41:02 50298

原创 4. 矩阵计算

① y是向量,x是标量的话,求导为标量。② y是向量,x是向量的话,求导为矩阵。是一个椭圆,梯度是指向值变化最大的方向。

2023-08-27 13:20:55 54127

原创 3. 数据操作、数据预处理

② 如果在后续计算中没有重复使用X,即内存不会过多复制,也可以使用X[:] = X + Y 或 X += Y 来减少操作的内存开销。① 机器学习用的最多的是N维数组,N维数组是机器学习和神经网络的主要数据结构。① 要改变一个张量的形状而不改变元素数量和元素值,可以调用reshape函数。① 可以用[-1]选择最后一个元素,可以用[1:3]选择第二个和第三个元素。① 为了处理缺失的数据,典型的方法包括插值和删除,这里,我们考虑插值。① 可以通过张量的shape属性来访问张量的形状和张量中元素的总数。

2023-08-27 13:11:18 54071

原创 2. 配置版本

( 注意:当 pip install ipykernel 时,不能挂 VNP。② 输入 conda create --name py3.6.3 python=3.6.3 命令,输入 [y]/n 时输入 y,创建 py3.6.3 虚拟环境,它会安装 python3.6.3 到 anaconda3 的 env 目录下。③ 首先确保目前盘和要进入的盘一样,输入 cd D:\11_Anaconda\envs\py3.6.3\Scripts 命令,进入 py3.6.3 目录下的 Scripts 文件夹下。

2023-08-27 12:45:43 53895

原创 1. 深度学习介绍

计算机视觉面对的是图片,图片里面都是一个个像素,像素很难用符号学来解释,所以计算机视觉大部分用概率模型、机器学习来解释。② 感知类似我能看到前面有个屏幕,推理是基于我看到的东西想象未来会发生什么事,根据看到的现象、数据,形成自己的知识,知道所有知识后能进行长远的规划,未来怎么做。② 17年的时候,几乎所有的团队都可以做到5%以内的错误率,基本上可以达到人类在图片识别上的精度了。② IMAGENET是比较大的图片分类数据集,如下图所示,它包括了一千类的自然物体的图片,它大概有一百万张图片。

2023-08-27 12:38:54 54621

原创 15. 查看开源项目

② 如下图所示,Terminal终端运行.py文件时,--变量 后面的值是给变量进行赋值,赋值后再在.py文件中运行。例如 ./datasets/maps 是给前面的dataroot赋值,maps_cyclegan是给前面的name赋值,cycle_gan是给前面的model赋值。Terminal终端命令语句,如果不对该默认变量新写入,直接调用默认的参数;如果对该默认变量新写入,则默认的参数被新写入的参数覆盖。① 像运行Tensorboar一样,在Terminal终端,可以命令运行.py文件。

2023-08-27 11:47:04 54270

原创 14. 完整模型验证套路

训练次数:22200,Loss:0.42121270298957825。训练次数:10000,Loss:0.9259409308433533。训练次数:10300,Loss:0.9383634924888611。训练次数:10500,Loss:0.7797534465789795。训练次数:10600,Loss:0.9295462965965271。训练次数:10700,Loss:0.7535973787307739。训练次数:10800,Loss:0.8077783584594727。

2023-08-27 11:44:20 54332

原创 13. 利用GPU训练

训练次数:1300,Loss:1.6947956085205078。训练次数:1500,Loss:1.8372352123260498。训练次数:1700,Loss:1.6654351949691772。训练次数:1800,Loss:1.9246405363082886。训练次数:1900,Loss:1.7132933139801025。训练次数:2100,Loss:1.4903961420059204。训练次数:2200,Loss:1.4754142761230469。

2023-08-27 11:39:29 54450

原创 12. 完整模型训练套路

对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。② tensor的requires_grad的属性默认为False,若一个节点(叶子变量:自己创建的tensor)requires_grad被设置为True,那么所有依赖它的节点requires_grad都为True(即使其他相依赖的tensor的requires_grad = False)在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。

2023-08-27 11:27:35 54513

原创 11. 网络模型保存与读取

---> 2 model = torch.load("./model/tudui_method1.pth") # 无法直接加载方式一保存的网络结构。② 再运行下面的代码,即下面为第1个代码块运行,无法直接导入网络模型。① 点击 Kernel,再点击 Restart。

2023-08-27 11:07:41 54636

原创 10. 网络模型使用及修改

【代码】10. 网络模型使用及修改。

2023-08-26 16:46:21 44698

原创 9. 优化器

① 损失函数调用backward方法,就可以调用损失函数的反向传播方法,就可以求出我们需要调节的梯度,我们就可以利用我们的优化器就可以根据梯度对参数进行调整,达到整体误差降低的目的。② 梯度要清零,如果梯度不清零会导致梯度累加。

2023-08-26 16:40:43 44709

大学期间对于Linux开发做的一些小小总结

大学期间对于Linux开发做的一些小小总结

2023-09-11

大学期间对数据库的配置做的总结

大学期间对数据库的配置做的总结

2023-09-11

Unbuntu必要设置.md

Unbuntu必要设置.md

2023-09-11

11111111113动物大转盘.py

11111111113动物大转盘.py

2023-09-11

vncviewer.exe

vncviewer.exe

2023-09-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除