自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 先进的可解释机器学习(XML)方法及其在制造领域中的应用

制造业处于技术进步的前沿,机器学习技术为流程优化、质量提升和预测性维护提供了前所未有的机会。然而,现代制造过程的复杂性常常导致机器学习模型或复杂的深度学习模型被视为缺乏透明度和可解释性的“黑箱”。这种不透明性引起了对信任、问责性以及理解底层决策过程能力的关注。在本文中,我们深入探讨了如何将可解释的机器学习方法整合到制造领域。我们专注于弥合复杂机器学习模型和人类理解之间的差距,最终促进这些模型在车间的无缝采用。局部可解释模型无关解释(LIME)和SHAPley可加性解释(SHAP)。

2024-08-30 14:53:17 1392

原创 A physics‑informed machine learning model for surface roughness prediction in milling operations

以下是该部分内容的概括:首先,设计参数测试方法,选择影响表面粗糙度的关键参数,并确定这些参数的变化范围。为此,首先使用物理知识来帮助生成尽可能多的数据,以帮助构建包含表示不同动机下的表面粗糙度的特征的数据集。本文采用的物理引导神经网络用于直接使用数据集开发预测模型,尝试从数据中提取特征,以黑盒方式表示表面粗糙度变化,其中物理的参与 切削刀具、加工工艺及其在模型中的组合与生成的数据集直接相关。通过这些步骤,研究者能够评估物理引导神经网络对输入参数变化的敏感性,确保模型预测的物理合理性,并识别关键的影响因素。

2024-08-30 14:40:32 1344

原创 Heterogeneous hypergraph learning for analyzing surface defects in additive manufacturing process

在最后阶段,提出了一种带有校正的变分图自动编码器(VGAE-Corr)方法来生成图并预测节点之间的关系,其中节点嵌入作为具有图结构的节点特征并输入到 编码器来学习图的潜在表示。为了学习 HHAM 的嵌入并进一步发现过程元素之间的关系,提出了一种超图学习框架,如图 3 所示,该框架由四个阶段组成,即(a)数据集收集,(b)超图生成 ,(c) 嵌入学习,(d) 链接预测。在传统的工艺分析中,要进行表面质量的检测,必须进行一系列的AM实验,然后进行相应的表征,这依赖于先进的测量设备。这与我们预测的结果一致。

2024-08-30 14:38:59 888 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除