A physics‑informed machine learning model for surface roughness prediction in milling operations

用于铣削操作中表面粗糙度预测的物理信息机器学习模型

提出了一种基于物理信息的神经网络,用于铣削加工中的表面粗糙度预测。在损失函数引入了物理建模以及单调性约束,用切削力数据代替过程刀具磨损因素。然后进行了敏感性分析,可以在日后用SHAP代替。

表面粗糙度在确定加工工件的质量和性能方面发挥着至关重要的作用。 为了提高最终产品的性能,有必要准确量化最终表面粗糙度。 为此,大量物理模型和数据驱动方法一直致力于对表面粗糙度进行建模。 然而,高性能物理和数据驱动的表面粗糙度预测模型往往受到铣削过程中建模过程复杂和数据不足的影响。 为此,本文提出了一种用于铣削操作中表面粗糙度预测的物理信息神经网络。 通过使用所提出的方法,可以将物理知识融入到深度学习预测模型中,可以有效降低建模阶段的复杂性和数据依赖性。 为了验证模型的适用性和准确性,使用各种工件、刀具和工艺参数进行了切削试验。 结果表明,该方法能够在描绘高性能的同时有效降低数据依赖性,在制造业中应用更加可靠。

1.本文提出了一种集成物理知识和机器学习神经网络的新方法。 所提出的方法分三个步骤进行。 首先,开发了具有可容忍精度的表面粗糙度物理模型。 然后,基于开发的模型和有限收集的数据构建物理信息神经网络。 所提出的模型由物理引导损失函数和机器学习神经网络组成。 考虑到CNN和LSTM在提取空间特征和时间特征方面的独特能力,本文采用CNN-LSTM作为机器学习神经网络。 此外,为了使所开发的模型与物理定律保持物理一致性,采用约束分析和敏感性分析来评估所开发的模型。 本文的主要贡献在于以下阶段: 1.本文提出了一种新颖的机器学习结构,可以有效减少建模过程中的数据依赖。 使用该方法只需要有限的数据,在实际应用中该方法比传统方法具有更大的可行性。  2.与传统的物理建模和机器学习方法相比,所提出的方法可以用很少的专家努力和知识来预测表面粗糙度。  3.本文提出了基于物理的约束分析。 利用这种约束,可以有效地保持机器学习模型与物理定律的一致。 它可以增强机器学习过程的可解释性

2.物理知识以数据增强、物理通知神经网络和物理约束分析三部分的形式与机器学习相结合。 这三个部分分别与机器学习建模过程的三个阶段相关,即训练前、训练过程中和训练过程后。 其中,物理知识主要是指铣削过程中表面粗糙度的形成过程,用加工表面发生的一般物理现象来表示。

在第一阶段,利用物理知识生成数据,以帮助解决实验收集数据的稀缺问题。1、传统的数据驱动方法需要大量且种类繁多的表面粗糙度数据来训练机器学习模型。 然而,收集如此海量且种类繁多的数据既耗时又昂贵,这阻碍了它们在现代制造业务中的应用。 为此,首先使用物理知识来帮助生成尽可能多的数据,以帮助构建包含表示不同动机下的表面粗糙度的特征的数据集。 通过使用这种物理模型生成的数据来补充实验收集的数据,可以节省大量的实验成本和时间。

第二部分主要是指物理知识指导下的机器学习建模过程。 在这一部分中,物理知识将在训练阶段与机器学习算法结合起来。 本质上,机器学习模型中的训练过程是一个权重和偏差更新过程,试图仅使用数据来近似关系。 因此,物理知识将被用来加速权重和偏差的更新过程,从而进一步减少预测模型的数据依赖性。

第三部分对初始训练的机器学习模型进行物理约束分析。 一般来说,使用有限数据的机器学习算法会导致开发的模型与实际物理机制不一致。 在机器学习建模过程中,将直接从数据中提取特征。 这样,数据中隐藏的信息将直接影响最终开发模型的质量。 因此,有限的数据量可能会使最终开发的模型与实际的物理机制不一致。 为了避免这种现象,采用物理约束评估部分,利用这两个模型对切削速度和进给速度等重要参数进行敏感性和单调性约束分析,并进行比较。 当敏感性和单调性约束分析比较接近时,表明最终开发的模型是合格的。 否则的话,就会被重新训练。

3.铣削加工本质上是工件与刀具之间的相对运动。 在这种相对运动过程中,铣削过程中涉及的理论切削区域无法完全消除。 加工表面并不是完全纯净的平面,铣削加工后仍残留大量区域,呈黄色。 理论粗糙度的数值由这些区域的最大残余高度确定。为此,开发了一个旨在说明刀具和工件之间相对运动的几何模型。

4.考虑到 LSTM 可以从原始数据集中学习顺序和时变模式,它可以用于动态跟踪切削刀具生命周期中表面的变化 。  CNN 在高维数据的特征学习过程中显示了其有效性,可以用来追踪过程参数差异引起的空间模式的变化。本文采用的神经网络部分是CNN-LSTM的组合。 在物理知识方面,主要是在训练阶段与损失函数部分进行整合,可以指导模型的训练过程。 与传统的损失函数 Loss ( Ytrue, Ypred ) 相比,本文提出了一种物理引导损失函数,它可以帮助捕获与既定物理定律一致的可概括的动态模式:

本文采用的物理引导神经网络用于直接使用数据集开发预测模型,尝试从数据中提取特征,以黑盒方式表示表面粗糙度变化,其中物理的参与 切削刀具、加工工艺及其在模型中的组合与生成的数据集直接相关。 为此,将使用不同切削刀具和加工工艺生成物理模型,其中切削刀具和加工工艺的物理特性也将结合在模型中。创新点是引入了物理信息损失约束以及单调性约束。还有以下的一些约束可以用于创新研究。

5.第五节主要介绍了如何对物理引导神经网络(Physics-Informed Neural Network, PINN)进行单调性和敏感性的研究。以下是该部分内容的概括:首先,设计参数测试方法,选择影响表面粗糙度的关键参数,并确定这些参数的变化范围。构建参数矩阵,列出所有影响因素及其变化的上下限值,以便在模型中进行系统的变化分析。对参数进行归一化处理,将不同单位和量级的参数转换到0到1的范围内,以便于一致性分析。使用逆归一化方法确定输入到物理模型中的参数值,这些参数值将用于评估模型的响应。

单调性约束分析:通过改变单个参数并观察输出结果的变化,绘制参数变化与输出响应的关系曲线,从而定性评估参数对最终表面粗糙度的单调性影响。

敏感性评估指数:定义并计算敏感性评估指数,该指数定量衡量不同变量对输出表面粗糙度的影响程度。通过比较不同参数的敏感性指数,可以识别出对模型输出影响最大的参数。

通过这些步骤,研究者能够评估物理引导神经网络对输入参数变化的敏感性,确保模型预测的物理合理性,并识别关键的影响因素。这有助于提高模型的可靠性和在实际工业应用中的有效性。创新方法:敏感性评价可以用SHAP进行机器学习可解释分析。

6.正如上面物理建模部分提到的,铣削过程中的表面粗糙度直接受到工艺参数、刀具几何形状、工件特性和刀具状况的影响。 一般来说,刀具状况可能会以几何方式对生成的表面形貌产生影响,但不可能获得特定的刀具磨损值并将其转移到开发的模型中。 鉴于此,本文采用切削力来间接反映刀具状况,考虑切削力是连续变量,表面粗糙度是一定值。 所开发模型的输入是加工工件表面时测量的切削力的统计特征,本文中切削力的采样频率为 50 kHz,z 表示 1 ms 内测得的切削力数据。 除考虑这一点外,考虑到切削力是一个连续变量,且表面粗糙度是一个确定值,于上述分析,切削力、切削参数、刀具类型和工件特性的统计特征作为所开发的物理信息神经网络的输入,并采用Ra作为输出目标。 获得表面粗糙度和切削力的总体实验设备如图4所示。图4由两部分组成。 图4a主要是铣削实验装置的图片。 本文对Ti6Al4V和45#钢工件进行了干铣削实验。 使用 Kistler 9139 在 50 k Hz 下采集切削力

7.表 4 列出了用于测试各种模型预测性能的工艺参数、工件和刀具类型。表中最后一行还提供了相应的表面粗糙度测量值。各组 SVR 和 PIM 模型的预测结果如图 6 所示,相应的模型性能统计结果如表 5 所示。显然,CNN 和 LSTM 的预测性能没有在任何表格和图中列出。 这是因为在训练和验证阶段出现了过拟合现象,CNN 和 LSTM 的损失使用 MSE 作为损失函数,并在每个迭代 epoch 中使用 MAE 作为评估指标。为了说明在 CNN 和 LSTM 训练阶段 MAE 的变化,刻意将迭代次数设置为 10,000 次,这可能与超参数调整程序不一致。这里的主要目的是试图说明过拟合现象,这还是可以接受的。图 7 显示了训练损失。此外,Y 轴是以 103 为单位的 MAE。虽然 CNN 和 LSTM 的训练 MAE 和验证 MAE 都呈下降趋势,但可以看出它们是并行的,而且训练阶段的验证 MAE 远高于训练 MAE。这些结果表明,最终开发的模型在实际应用中并不可靠。这主要是由于收集到的数据规模有限,阻碍了从收集到的数据中学习特征的能力,这也是导致其无法泛化训练中未遇到的场景的原因。在此基础上,训练阶段存在过拟合现象,即在训练阶段试图拟合损失函数,而在验证应用中表现不佳。因此,CNN 和 LSTM 的预测结果并不可靠和令人信服,因此本文没有提供。

从表中可以看出,拟议方法的性能仍然优于 SVR。这些结果表明,所提出的方法更适用于数据有限的预测任务。就 PIM 和 SVR 而言,拟议方法在 MAP、MAE 和 RMSE 方面的表现要好得多。就 SVR 而言,统计结果相对低于参考文献 [29],这也是由于数据有限造成的。SVR 较差的特征学习能力也可能阻碍其在复杂任务应用中的预测性能。本文提出的方法之所以能达到最佳性能,原因在于以下阶段。损失函数中包含的物理知识有助于深度学习捕捉可概括的动态模式,使其符合既定的物理规律。物理约束的正则化减少了可能的参数搜索空间,这就为使用更少的数据进行学习提供了可能,同时使训练过程与物理规律保持一致。因此,所提出的 PIM 可以用有限的数据捕捉动态模式,这也验证了它在实际制造业中的应用潜力。在预测任务方面,45#钢的预测结果总体优于 Ti6Al4V;这可能与变化有关,其中 45# 钢的表面粗糙度值变化更适合捕捉。总之,本文证明了所提方法的有效性和可行性。它证明了我们提出的方法在实际应用阶段只需使用有限的数据就能获得良好的性能。利用这一优势,建议的方法在实际生产操作中的应用将更具灵活性,因为实际生产操作无法为每个产品收集大量数据。

8.本文提出了一种用于铣削过程中表面粗糙度预测的物理信息神经网络。所提出的方法主要由两部分组成:第一部分是建立物理引导的损失函数,然后采用基于物理的约束来避免建立的模型与物理知识不一致。所提出的方法在铣床上使用不同的切削工具、工件和工艺参数进行了验证。为了证明所提方法的有效性,将所提方法与最流行的深度学习方法和传统机器学习方法进行了比较。结果表明,与其他方法相比,我们提出的方法取得了最优异的性能。本文的主要贡献在于采用了一种新颖的机器学习方法,这种方法只需使用有限的数据就能与物理规律保持一致,从而探索不同动机下的表面粗糙度变化。与传统方法相比,本文提出的方法在应用于实际工业环境方面更具优势。潜在的不足可能在于表面粗糙度建模的时变特征提取过程。一般来说,物理模型很难在建模过程中考虑到时变因素,这可能会导致建模效果随时间而下降。下一步,我们将更加关注将时序特征纳入所开发的模型。

  • 20
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
物理启发学习是一种结合物理学知识和机器学习方法的新兴领域。传统的机器学习方法主要依赖于大量的数据来进行训练和预测,但在某些领域中,数据收集成本较高或者数据量不足。而物理启发学习的目标就是通过利用已有的物理知识和部分观测数据,来减小对大量样本数据的依赖。 物理启发学习的核心思想是将物理方程和机器学习方法进行融合。通过引入物理约束,可以在不拥有大量数据的情况下,仍能够进行有效的学习和预测。物理方程可以提供关于系统行为的基本规律,而机器学习方法则可以通过学习数据中的模式和规律,来建立一个可以描述系统行为的模型。这种融合的方法使得物理启发学习能够更好地利用数据,并且可以更好地解释和预测复杂的系统行为。 物理启发学习在许多领域中都有广泛的应用。例如,在流体力学领域,物理启发学习可以通过结合流体力学方程和观测数据,来预测流体的运动行为。在材料科学领域,物理启发学习可以用来优化材料的性质和设计新的材料。在天文学中,通过物理启发学习,可以从有限的观测数据中还原天体的演化历史。 总之,物理启发学习是一种将物理学知识和机器学习方法相结合的领域,通过引入物理约束,可以在数据不足的情况下进行有效的学习和预测。这种方法在许多领域中都有广泛的应用,并且有着重要的研究价值和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值