ADVANCED EXPLAINABLE MACHINE LEARNING (XML) APPROACHES AND THEIR APPLICATIONS IN MANUFACTURING PROCESSES
摘要
制造业处于技术进步的前沿,机器学习技术为流程优化、质量提升和预测性维护提供了前所未有的机会。然而,现代制造过程的复杂性常常导致机器学习模型或复杂的深度学习模型被视为缺乏透明度和可解释性的“黑箱”。这种不透明性引起了对信任、问责性以及理解底层决策过程能力的关注。在本文中,我们深入探讨了如何将可解释的机器学习方法整合到制造领域。我们专注于弥合复杂机器学习模型和人类理解之间的差距,最终促进这些模型在车间的无缝采用。我们探索了两种知名的可解释性技术:局部可解释模型无关解释(LIME)和SHAPley可加性解释(SHAP)。我们展示了如何通过基于LIME的可解释机器学习方法,更好地理解制造过程中光学显微镜图像中的微观结构属性和加工性。结果显示,这种解释方法可以全面调查微观结构异质性对可持续材料加工中加工行为的影响,并找到纤维结构异质性对结果加工力的因果关系。基于SHAP的方法通过声发射(AE)信号调查了振动辅助原子力显微镜(AFM)基础纳米加工的机制解释,揭示了振动辅助纳米加工的基本理解。这些技术提高了透明度,允许制造专业人员自信地定制材料和流程。这些可解释方法提供的透明洞察力增强了对机器学习模型的信任,促进了领域专家之间的协作,并鼓励了明智的决策制定。此外,这些技术为构建符合监管、负责任和道德的生产流程奠定了基础,将推动整个行业进入智能和透明生产时代。总之,将基于LIME和SHAP的解释整合到制造过程中,为高级机器学习模型和领域专业知识之间建立了共生关系。通过揭示微观结构属性和加工性之间复杂的关系,这些技术将制造实践提升到新的透明度、创新和优化水平。
引言
1.ML模型比人类更有效率。它们灵活,能够分析大量数据而无需独特的洞察力或深入的领域知识。原材料表征数据(例如,图像和频谱)和传统的材料状态变量(如压力和温度)可以作为ML模型的输入。ML模型也具有准确性。在制造业领域,它们在不同尺度上对各种材料属性显示出卓越的预测准确性。例如,原子属性如势能和晶体结构(Behler 2016; Schmidt 等人 2019),微观属性如应变分布(Z. Yang 等人 2019),以及宏观属性如机械-热稳定性和压缩强度(Lu 等人 2020; Gallagher 等人 2020)。
2.缺乏透明度可能会阻碍这些模型在制造场景中的应用,因为在这些场景中,问责性、可追溯性和人类理解至关重要。同时,材料的微观结构在制造应用中起着关键和基本的作用。微观结构是材料内部多尺度结构的排列、组成和表征。理解和控制微观结构至关重要,因为它直接影响材料的机械、热、电和化学性能。然而,在制造领域,微观结构与加工性之间的关系仍然存在知识空白。研究的主要目标是实现XML方法在制造领域的应用。它可以指导如何开发XML方法,使制造商能够理解机器学习模型是如何得出特定预测或决策的,例如,识别对模型输出影响最大的特征、交互和模式。本文介绍了 LIME和SHAP两种XML方法,以提高ML模型的透明度、可解释性和洞察力,这些模型旨在理解制造应用中不同尺度下材料异质微观结构与加工性之间的关系。XML方法的应用将描述制造部门的几个用例,并提出一些机会。通过利用两种类型的可解释性技术(LIME和SHAP),本报告对可持续材料加工中微观结构异质性对加工行为结果的影响进行了全面调查,从过程监控显微图像中提取物理描述符,并发现了纤维结构异质性对结果加工力的因果关系;调查了振动辅助原子力显微镜(AFM)基础纳米加工的机制解释,通过声发射(AE)信号,揭示了振动辅助纳米加工的基本理解。总之,这项研究的目标是通过制造应用的XML方法,弥合复杂机器学习模型和制造领域知识之间的差距。因此,高级XML模型理解微观结构属性和加工性结果之间的关系,并提供准确的预测和清晰、可解释和可操作的解释。这为减少黑盒模型的不透明度和增加系统信任提供了手段。
3.本文基于LIME和SHAP方法,提出了一种XML方法,用于理解材料异质微观结构与不同尺度下的加工行为之间的关系。用于分析微观结构特征对异质材料加工性的影响。它可以用于生成过程-结构-属性映射,指导制造过程。此外,它还可以帮助制造商做出明智的决策,排除问题,改进流程,并确保机器学习在制造工作流程中的成功整合。
(1)提出了一种基于LIME的XML方法,从过程监控显微图像中提取物理描述符,并发现纤维结构异质性对微尺度下结果加工力的因果关系。这种方法为发现材料微观结构对结果过程动态的因果关系,并在材料去除过程中准确预测切削行为提供了机会。此外,提出了一种图像处理分析方法,用于表征其模糊和半透明光学显微图像(OM)的异质微观结构,并建立微观结构与可持续材料加工性之间的关系。这是一种非接触式、快速、准确、经济的基于图像处理的分析方法,可以直接从原位微观结构中提取复合材料的微观结构。本应用报告了对可持续材料加工中微观结构异质性对切削力结果行为影响的全面调查。
(2)提出了一种基于SHAP的XML方法,通过声发射信号对振动辅助原子力显微镜(AFM)基础纳米加工进行表征,以揭示振动辅助纳米加工的基本理解。这种XML模型可以进行研究,以调查振动辅助AFM基础纳米加工的机制解释,这将有助于揭示振动辅助纳米加工的基本理解。本应用报告了一种基于传感器的监测方法,通过自动选择区分不同材料去除量的声发射频谱响应,允许实时分类振动辅助纳米图案化的不同条件。它为发现振动辅助纳米制造过程中的工艺表征和机制提供了机会。
4.第3章报告了对可持续材料加工中微观结构异质性对切削力结果行为影响的全面调查。本章介绍了一种基于图像处理的分析方法,用于表征微观结构特征。这种非接触式、快速、准确且经济的材料表征方法可以帮助分析复合材料的异质微观结构,并促进其工业应用。同时,实施了一种基于LIME的XML方法,通过发现加强元素/纤维微观结构之间的关系,来解释CNN黑盒模型。提出的基于LIME的XML方法从过程监控显微图像中提取物理描述符,并发现纤维结构异质性对结果加工力的因果关系。第4章介绍了一种基于SHAP的XML方法,用于研究微加工和振动辅助AFM基础纳米加工的机制解释,通过声发射信号,有助于揭示振动辅助纳米加工的基本理解。
综述
在我们的案例中,后验方法更适合,因为我们研究的目标集中在识别和解释材料微观结构在不同尺度上对结果过程动态的影响。此外,后验解释允许评估和比较不同的机器学习模型,以选择给定制造问题最有效的模型。LIME在制造业的第一个应用是揭示纳米划痕过程中从声发射中收集到的材料微观结构的物理见解(Iquebal, Pandagare, 和 Bukkapatnam 2020)。
第三章:基于 LIME 的 XML 方法在可持续材料增材加工过程中的应用
1.图像采集:使用光学显微镜对NFRPs的微观结构进行成像。2.使用SLIC和分水岭算法对图像中的纤维增强元素进行分割提取。3.可以从分割出来的增强元素图像中用物理描述符进行表示量化。4.用CNN模型将图像作为输入预测切削力。5.用LIME生成CNN模型的可解释性分析。6.相关性显著的部分将被提取进行微观结构分析。7.观察到解释性强的部分FVF数值高。8.研究其他物理解释符对于切削力的影响