基础数据结构特点及其在C++中的初始化构建方法(下)

非线性数据结构部分

一、树

树是一种非线性数据结构,根据子节点数量可分为二叉树多叉树,最顶层的节点称为根节点。

以二叉树为例,每个节点包含三个成员变量:①值val,②左子节点left,③右子节点right。

struct TreeNode {
    int val;         // 节点值
    TreeNode *left;  // 左子节点
    TreeNode *right; // 右子节点
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

如图所示,建立此二叉树需要实例化每个节点,并构建各节点的引用指向。

// 初始化节点
TreeNode *n1 = new TreeNode(3); // 根节点 root
TreeNode *n2 = new TreeNode(4);
TreeNode *n3 = new TreeNode(5);
TreeNode *n4 = new TreeNode(1);
TreeNode *n5 = new TreeNode(2);

// 构建引用指向
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;

二、图

图是一种非线性数据结构,由节点(顶点)vertex和边edge组成,每条边连接一对顶点

根据边的方向有无,分为有向图和无向图。下面以无向图为例开展介绍:

如下图所示,此无向图的 顶点 集合分别为:

顶点集合: vertices = {1, 2, 3, 4, 5}
边集合: edges = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (3, 5), (4, 5)}

表示图的方法通常有两种:

int vertices[5] = {1, 2, 3, 4, 5};
int edges[5][5] = {{0, 1, 1, 1, 1},
                   {1, 0, 0, 1, 0},
                   {1, 0, 0, 0, 1},
                   {1, 1, 0, 0, 1},
                   {1, 0, 1, 1, 0}};

int vertices[5] = {1, 2, 3, 4, 5};
vector<vector<int>> edges;

vector<int> edge_1 = {1, 2, 3, 4};
vector<int> edge_2 = {0, 3};
vector<int> edge_3 = {0, 4};
vector<int> edge_4 = {0, 1, 4};
vector<int> edge_5 = {0, 2, 3};
edges.push_back(edge_1);
edges.push_back(edge_2);
edges.push_back(edge_3);
edges.push_back(edge_4);
edges.push_back(edge_5);

三、散列表

散列表是一种非线性数据结构,通过利用hash函数将指定的键key映射至对应的值value,以实现高效的元素查找。

设想一个简单的场景:小力,小特,小扣的学号分别为10001,10002,10003.

现需求从姓名查找学号。

则可通过建立姓名为key,学号为value的散列表实现此需求,代码如下:

// 初始化散列表
unordered_map<string, int> dic;

// 添加 key -> value 键值对
dic["小力"] = 10001;
dic["小特"] = 10002;
dic["小扣"] = 10003;

// 从姓名查找学号
dic.find("小力")->second; // -> 10001
dic.find("小特")->second; // -> 10002
dic.find("小扣")->second; // -> 10003

Hash函数设计示例:

假设需求:从学号查找姓名。

将三人的姓名存储至以下数组中,则各姓名在数组中的索引分别为0,1,2.

string names[] = { "小力", "小特", "小扣" };

此时,我们构造一个简单的 Hash 函数( % 为取余符号 ),公式和封装函数如下所示:

int hash(int id) {
    int index = (id - 1) % 10000;
    return index;
}

则我们构建了以学号为 key 、姓名对应的数组索引为 value 的散列表。利用此 Hash 函数,则可在
O(1) 时间复杂度下通过学号查找到对应姓名,即:

names[hash(10001)] // 小力
names[hash(10002)] // 小特
names[hash(10003)] // 小扣

以上设计只适用于此示例,实际的Hash函数需保证低碰撞率、高稳健性等,以适用于各类数据和场景。

四、堆

堆是一种基于「完全二叉树」的数据结构,可使用数组实现。以堆为原理的排序算法称为「堆排序」,基于堆实现的数据结构为「优先队列」。堆分为「大顶堆」和「小顶堆」,大(小)顶堆:任意节点的值不大于(小于)其父节点的值。

完全二叉树定义: 设二叉树深度为 k ,若二叉树除第 k 层外的其它各层(第 1 至 k−1 层)的节点达到最大个数,且处于第 k 层的节点都连续集中在最左边,则称此二叉树为完全二叉树。

如下图所示,为包含 1, 4, 2, 6, 8 元素的小顶堆。将堆(完全二叉树)中的结点按层编号,即可映射到右边的数组存储形式。

通过使用优先队列的压入push()和弹出pop()操作,即可完成堆排序,实现代码如下:

// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> heap;

// 元素入堆
heap.push(1);
heap.push(4);
heap.push(2);
heap.push(6);
heap.push(8);

// 元素出堆(从小到大)
heap.pop(); // -> 1
heap.pop(); // -> 2
heap.pop(); // -> 4
heap.pop(); // -> 6
heap.pop(); // -> 8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落雨封海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值