非线性数据结构部分
一、树
树是一种非线性数据结构,根据子节点数量可分为二叉树和多叉树,最顶层的节点称为根节点。
以二叉树为例,每个节点包含三个成员变量:①值val,②左子节点left,③右子节点right。
struct TreeNode {
int val; // 节点值
TreeNode *left; // 左子节点
TreeNode *right; // 右子节点
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
如图所示,建立此二叉树需要实例化每个节点,并构建各节点的引用指向。
// 初始化节点
TreeNode *n1 = new TreeNode(3); // 根节点 root
TreeNode *n2 = new TreeNode(4);
TreeNode *n3 = new TreeNode(5);
TreeNode *n4 = new TreeNode(1);
TreeNode *n5 = new TreeNode(2);
// 构建引用指向
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
二、图
图是一种非线性数据结构,由节点(顶点)vertex和边edge组成,每条边连接一对顶点
根据边的方向有无,分为有向图和无向图。下面以无向图为例开展介绍:
如下图所示,此无向图的 顶点 和 边 集合分别为:
顶点集合: vertices = {1, 2, 3, 4, 5}
边集合: edges = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 4), (3, 5), (4, 5)}
表示图的方法通常有两种:
int vertices[5] = {1, 2, 3, 4, 5};
int edges[5][5] = {{0, 1, 1, 1, 1},
{1, 0, 0, 1, 0},
{1, 0, 0, 0, 1},
{1, 1, 0, 0, 1},
{1, 0, 1, 1, 0}};
int vertices[5] = {1, 2, 3, 4, 5};
vector<vector<int>> edges;
vector<int> edge_1 = {1, 2, 3, 4};
vector<int> edge_2 = {0, 3};
vector<int> edge_3 = {0, 4};
vector<int> edge_4 = {0, 1, 4};
vector<int> edge_5 = {0, 2, 3};
edges.push_back(edge_1);
edges.push_back(edge_2);
edges.push_back(edge_3);
edges.push_back(edge_4);
edges.push_back(edge_5);
三、散列表
散列表是一种非线性数据结构,通过利用hash函数将指定的键key映射至对应的值value,以实现高效的元素查找。
设想一个简单的场景:小力,小特,小扣的学号分别为10001,10002,10003.
现需求从姓名查找学号。
则可通过建立姓名为key,学号为value的散列表实现此需求,代码如下:
// 初始化散列表
unordered_map<string, int> dic;
// 添加 key -> value 键值对
dic["小力"] = 10001;
dic["小特"] = 10002;
dic["小扣"] = 10003;
// 从姓名查找学号
dic.find("小力")->second; // -> 10001
dic.find("小特")->second; // -> 10002
dic.find("小扣")->second; // -> 10003
Hash函数设计示例:
假设需求:从学号查找姓名。
将三人的姓名存储至以下数组中,则各姓名在数组中的索引分别为0,1,2.
string names[] = { "小力", "小特", "小扣" };
此时,我们构造一个简单的 Hash 函数( % 为取余符号 ),公式和封装函数如下所示:
int hash(int id) {
int index = (id - 1) % 10000;
return index;
}
则我们构建了以学号为 key 、姓名对应的数组索引为 value 的散列表。利用此 Hash 函数,则可在
O(1) 时间复杂度下通过学号查找到对应姓名,即:
names[hash(10001)] // 小力
names[hash(10002)] // 小特
names[hash(10003)] // 小扣
以上设计只适用于此示例,实际的Hash函数需保证低碰撞率、高稳健性等,以适用于各类数据和场景。
四、堆
堆是一种基于「完全二叉树」的数据结构,可使用数组实现。以堆为原理的排序算法称为「堆排序」,基于堆实现的数据结构为「优先队列」。堆分为「大顶堆」和「小顶堆」,大(小)顶堆:任意节点的值不大于(小于)其父节点的值。
完全二叉树定义: 设二叉树深度为 k ,若二叉树除第 k 层外的其它各层(第 1 至 k−1 层)的节点达到最大个数,且处于第 k 层的节点都连续集中在最左边,则称此二叉树为完全二叉树。
如下图所示,为包含 1, 4, 2, 6, 8 元素的小顶堆。将堆(完全二叉树)中的结点按层编号,即可映射到右边的数组存储形式。
通过使用优先队列的压入push()和弹出pop()操作,即可完成堆排序,实现代码如下:
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> heap;
// 元素入堆
heap.push(1);
heap.push(4);
heap.push(2);
heap.push(6);
heap.push(8);
// 元素出堆(从小到大)
heap.pop(); // -> 1
heap.pop(); // -> 2
heap.pop(); // -> 4
heap.pop(); // -> 6
heap.pop(); // -> 8