CUDA学习笔记
文章平均质量分 83
CUDA学习与过程中相关的学习笔记。
爱吃小酥肉的小波
这个作者很懒,什么都没留下…
展开
-
无显卡用google colab或阿里云DSW学CUDA编程的环境配置教程
在搜 “没有显卡怎么学CUDA编程” 、 “怎么配置google colab的CUDA编程环境” 、 “怎么配置阿里云DSW的CUDA编程环境” 的时候并没有太多相关文章,就顺带着写下了这个文章,如果有需要的话可以看看。原创 2023-12-21 20:59:52 · 1934 阅读 · 1 评论 -
CUDA+PTX关于GPU的入门基础概念
需要注意的是,这些数量限制是硬件和架构相关的,不同的GPU型号和架构可能会有不同的限制。所有线程在一个 warp 中执行的指令是同步的,即它们都执行相同的指令,无论这些线程是否满足条件。(比如一个程序含有128个线程,把每32个线程称为一个warp,一个warp是一个虚拟的并行计算的单元,warp是最基本的执行单位)不同的GPU含有的寄存器数量是未知的。块是调度和同步的基本单元。warp的切换是没有开销的,它依赖于硬件的调度器和算法的判断,可以执行的warp会被放在可执行的队列中,然后按照优先级进行执行。原创 2024-01-28 14:12:45 · 1094 阅读 · 0 评论 -
CUDA编程的框架-以向量相加为例
CPU和GPU运行是异步的,CPU一运行完kernel函数之后就会走,不管GPU有没有算完,所以在写程序的时候要知道GPU算完没。它需要知道自己的块的ID:blockIdx.x, blockIdx.y, blockIdx.z ,说明这个函数只能在GPU中执行,只能在GPU中调用,不能像刚刚一样的调用。注意在编程时要区分CPU的程序和GPU的程序,CPU的内存和GPU的内存。CPU的内存和GPU的内存之间是相互独立的,因此需要进行通信。CPU适合控制GPU程序的逻辑结构。原创 2024-01-28 17:42:27 · 454 阅读 · 0 评论