Link16数据链同步技术的仿真

引言

本文记录了对Link16同步技术的复现过程,使用软件是MATLAB,主要是完成了Link16同步头数据的产生,同时通过非相关的方法完成了Link16的同步,主要是以32倍下采样完成粗同步,1倍下采样完成了精同步。

同步传输波形

在Link16系统中,一共有32个粗同步头和8个精同步头,每个同步头的长度为32。本文主要选择传统Link16链路中用于扩频的循环码移键控(Cyclic Code Shift Keying,CCSK)序列。该序列具有良好的自相关性和互相关性,在数据链中主要用作扩频码,码元与码字的对应如下表所示。

表1 码元与CCSK对应表

在调制方面,同步序列采用MSK调制进行发送,表达式为:

S_{m s k}(t)=A \cos \left[2 \pi f_c t+\theta(t)\right]=A \cos \left(2 \pi f_c t+\frac{a_k \pi}{2 T_b} t+\phi_k\right), k T<t \leq(k+1) T

式中,A为信号的幅度,f_c表示载波的频率,a_k为发送的信息比特,a_k=\pm 1,T为信号的符号周期,\phi_k表示前k个符号的相位累积,由前后信息比特的差值决定,表达式为:

\phi_k=\phi_{k-1}+\frac{\pi}{2}(k-1)\left(a_{k-1}-a_k\right)

由上式可知,MSK信号具有连续相位、恒包络等特点。与常用矩形成型的二进制相移键控(Binary Phase Shift Keying,BPSK)信号相比,MSK信号占用带宽小、频谱利用率高且容易放大发送。更为重要的是,同步序列采用MSK调制发送能保证整体信号频谱的一致性,从而提升系统的抗截获性能。

跳频图案

基带MSK信号经过射频发送后工作在960MHz~1215MHz频段上,一共有51个频点,跳频带宽即为237MHz,每个频点的间隔为3MHz。由此可见系统的跳频频点足够多且跳频范围,能有效避免频带阻塞式干扰和瞄准式干扰。本系统中每个单脉冲对应着一个跳频频点,载波驻留期为13us,跳频速率可达76923次/s,可有效地躲避跟踪式干扰。

载波频率随机跳变的规律称之为跳频图案。在跳频图案的构造上,往往遵循平衡性和宽间隔性。平衡性是指在一个跳频周期中各个频率出现的次数要尽可能一致;宽间隔性是指相邻跳频频点的频率差尽可能大,这有助于提升系统的抗衰落和抗干扰能力。

遵循以上原则,在本系统中,粗同步头和精同步头的跳频图案中包含八个不同的跳频频点。对于粗同步头,需要利用八个不同的频点组成包含32个频点的跳频图案。为了后续进行捕获算法设计,可将粗同步分为四组,每组八个同步头,每个同步头对应不同的跳频频点,并且各组之间的频点顺序无明确规律性。对于精同步头的跳频图案,每个同步头对应着一个跳频频点。与此同时,跳频图案中相邻跳频频点的间隔不小于30MHz。

同步整体方案设计

由系统链路仿真结果可知,为了防止定时偏差对链路性能造成的损失过大,在高斯信道下,当SNR\geq 0时,同步定时位置在理想位置前后\frac{T}{4}内的概率需要大于99%。同时在衰落信道下,需要在SNR\geq 2dB时满足定时精度。此外,链路本身的抗频偏性满足指标需求,并考虑实现资源,暂不设计频偏估计。

为了方便接收的相关运算,在发送端,我们选择一组m序列,经MSK调制后形成基带波形。在跳频方面,在数字域中完成对信号的跳频后,再经过射频发送至工作频段。

为了减小运算的复杂度,我们将粗同步头和精同步头分别处理,即粗同步头完成同步捕获,精同步头完成精确定时。再粗同步捕获过程中,以一个比较大的采样倍数对接收信号进行下采后,与本地同步序列作相关运算,使粗同步的定时精度控制在符号量级内。在精同步定时估计中,则以一个比较小的采样倍数对接收信号进行下采后作相关运算,将定时精度控制在采样点量级内,完成最终的定时,以此减小资源开销。此外,捕获算法需要八路并行完成信号的下变频及相关运算,而在精同步运算过程中,已经确定出了精同步头的大致位置,可以串行对信号进行解跳,即只需一路就能完成精同步的跳频接收。

在门限判决方面,粗同步一共有32个同步头,可利用相关峰值之间的对应位置来进行判决,即多相关峰值位置判决发,以此降低传统门限设置法的繁杂性。对于精同步,当接收信号与本地序列对齐时,得出的相关值最大,即可利用区间求最值的方法来完成定时估计。

综上可得出同步处理关键流程,首先将同步序列进行MSK调制,与报头和业务信号一起组帧,组帧完成后跳频发出。接收端对信道传来的信号进行同步捕获(粗同步)计算,即先进行八路并行接收,然后进行相关运算,得出每路的相关值,最后利用多相关峰值进行门限判决,如果判决失败就继续搜索,判决成功则根据捕获位置取出精同步数据,进行定时估计(精同步)运算。精同步运算主要包括串行解跳、相关运算及最值判决,以此将定时精度缩小到采样点量级范围内,给出定时位置,完成最终的定时。

图1 同步处理的关键流程

同步捕获算法的设计

分析Link-16系统的数学模型,接收端的接收信号经正确下变频及滤波后为:

r(t)=s(t-\tau) e^{j\left(2 \pi \Delta f t+\theta_m\right)}+n(t)

其中,r(t)为经正确下变频及滤波后的接收信号;s(t)为扩频码c(t)经过基带MSK调制得到的复基带信号,即同步头,满足s(t-\tau) s^*(t)=\left\{\begin{array}{l} 1, \tau=0 \\ 0, \tau \neq 0 \end{array}\right.;\tau为时延;\Delta f为频偏,\theta _m表示第m个单脉冲由于器件不稳定所产生的随机相偏,在[0,2\pi)范围内服从均匀分布;n(t)是均值为零,方差为\sigma ^2的加性高斯白噪声。

假设采样速率为f_s,则采样周期T_s=\frac{1}{f_s},采样后的接收信号为:

r_k=s_{k-d} e^{j\left(2 \pi \Delta k T_s+\theta_m\right)}+n_k

其中,k对应t=kT_s这个采样时刻的采样点,d为时延所对应的采样点数。

基于匹配滤波法设计的同步系统的关键任务是,计算及处理接收信号和本地信号之间的相关值。理想情况下,当接收信号与本地信号匹配时,相关值就会出现一个很明显的尖峰,通常称为相关峰,通过寻找相关峰的位置来找到帧起始的位置。但是,由于信道噪声、频偏、相偏以及其他因素的影响,会使相关峰变得模糊甚至无法分辨。因此,必须对其进行进一步的处理,来提高其分辨性。

在本节中,将同步算法分为相关值计算、相关值处理以及检测和判决三个步骤。

a.第一步是将接收信号与本地同步头相关。

接收信号首先与本地已调扩频MSK信号共轭相乘得到y_k,具体表示为:

y_k=\left(s_{k-d} e^{j\left(2 \pi \Delta k T_s+\theta_m\right)}+n_k\right) s_k^*

然后对y_k进行累积、平均,得到

c o r_m=\frac{1}{L} \sum_{k=1}^L r_k s_k^*=\frac{1}{L} \sum_{k=1}^L\left(s_{k-d} e^{j\left(2 \pi \Delta k T_s+\theta_m\right)}+n_k\right) s_k^*

其中,cor_m为第m个单脉冲所对应的相关值;L是一个相干累积周期内的信号采样点数,一个单脉冲同步头有32个符号,若每个符号的采样点数为N_{sample},则满足L=32\times N_{sample},结合同步头格式可知,一个单脉冲的采样点数能使r_1,r_2,...,r_L包含一个扩频码c(t)周期的MSK调制信号。

当接收信号与本地同步头对准时,第m个单脉冲同步头内采样点r_ks_k((m-1) L+1 \leq k \leq m L, 1 \leq m \leq M)的相关值cor_m为:

\begin{aligned} \operatorname{cor}_m & =\frac{1}{L} \sum_{k=(m-1) L+1}^{m L}\left(s_k e^{j\left(2 \pi \Delta k T_s+\theta_m\right)}+n_k\right) s_k^* \\ & =\frac{1}{L_{k=(m-1) L+1}^{m L}} e^{j\left(2 \pi \Delta k T_s+\theta_m\right)}+N_m=\operatorname{cor}_{I_{-} m}+j \operatorname{cor}_{Q_{-} m} \end{aligned}

其中,N_m=\frac{1}{L} \sum_{k=m L+1}^{(m+1) L} n_k * s_k^*,满足N_m\sim N(0,\sigma ^2);cor_m是一个复信号,cor_{I_m}cor_{Q_m}分别为cor_m的实部和虚部,具体表示为:

cor_{I_{-m}}\sim N\left(\frac{1}{L}\sum_{k=(m-1)L+1}^{mL}\cos\left(2\pi\Delta fkT_s+\theta_m\right),\frac{\sigma^2}{2}\right)

cor_{Q_-m}\sim N\left(\frac1L\sum_{k=(m-1)L+1}^{mL}\sin\left(2\pi\Delta fkT_s+\theta_m\right),\frac{\sigma^2}2\right)

当接收信号没有与本地同步头对准时,仿照以上步骤得到相关值cor_{N_m}的虚部cor_{NI\_m}、实部cor_{NQ\_m}也服从正态分布,具体如下:

cor_{NI_m}\sim N\Bigg(0,\frac{\sigma^2}{2}\Bigg)

cor_{Q_m}\sim N\Bigg(0,\frac{\sigma^2}{2}\Bigg)

第二步将对相关值进行处理,去除接收信号中载波相位和噪声的影响。最常用的去除载波相位的方法是对相关值进行平方处理。

当接收信号与本地同步头对准时,相关值cor_m经过平方率检波器的输出Z_m为:

Z_m=\left\|cor_m\right\|^2=\left(cor_{I_-m}\right)^2+\left(cor_{Q_-m}\right)^2

图2 8路平方处理后的相关值

Link-16链路的粗同步发送在8个频点上,按照匹配滤波发接收端也将在8个频点上进行接收,将8路相关值经过平方率检波器输出。当信道没有噪声时,能够更清晰的看到8路输出的情况,如上图所示,可以看到,由于32个单脉冲粗同步头随机发送在8个频点上,因此每个频点有4个相关峰。但是,由于信道噪声、频偏、相偏以及其他因素的影响,会使相关值变得模糊甚至无法分辨。因此,必须对其进行进一步的处理。考虑将多个相关峰延迟叠加,以提高其可分辨性,得到最终的非相干累积至COR作为判决统计量:

COR=\sum_{m=1}^M\left\|cor_m\right\|^2=\sum_{m=1}^M\left[\left(cor_{I_m}\right)^2+\left(cor_{Q_m}\right)^2\right]=\sum_{m=1}^M\left(cor_{I_m}\right)^2+\sum_{m=1}^M\left(cor_{Q_m}\right)^2

粗同步时考虑在32个单脉冲粗同步头长度范围内,根据跳频图案将每一路对应的4个相关峰均延迟至第32个相关峰的位置,并进行叠加得到最终的判决统计量,为了进行区分,将第q路的判决统计量称为COR_q\left ( 1\leq q\leq Q \right)

第三步对相关峰采用合理的方式进行检测及判决。

可以采用固定门限法、恒虚警发及最大值法进行检测。

仿真实验

参数设置

参数设置,我们设置符号速率为5MBaud,系统的采样率为160MHz,调制方式为MSK,粗同步头的个数为32,精同步头的个数为8个。

结果展示

1.同步头的时域波形如图所示。

如上图所示,共有40个同步头,其中有32个粗同步头,8个精同步头。

2.32个粗同步头的相关峰如图所示。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值