目标检测中的常见指标

概念引入:

TP:True Positive  IoU > 阈值       检测框数量

FP:   False Positive IoU < 阈值      检测框数量

FN:   False Negative                       漏检框数量

Precision:查准率

\frac{TP}{TP + FP}

Recall:查全率(召回率)

\frac{TP}{TP + FN}

AP:P-R曲线下的面积

P-R曲线:Precision-Recall曲线

mAP:mean Average Precision  各类别AP的平均值

举例计算(在NMS处理后剩余的预测框下):

根据上表计算查准率和查全率:

依据查准率和查全率得到P-R曲线,进而得到AP

coco数据集评价指标官网解释:

COCO - Common Objects in Context (cocodataset.org)icon-default.png?t=N7T8https://cocodataset.org/#detection-eval

COCO Evaluation Result

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DQ小恐龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值