明天蓝桥杯了,希望能争二保三吧
题目:
将 3 分解成两个正整数的和,有两种分解方法,分别是 3 = 1 + 2 和 3 = 2 + 1。注意顺序不同算不同的方法。
将 5 分解成三个正整数的和,有 6 种分解方法,它们是 1+1+3 = 1+2+2 = 1+3+1 = 2+1+2 = 2+2+1 = 3+1+1。
请问,将 2021 分解成五个正整数的和,有多少种分解方法?
排列组合解法
2020个位置,选4个
C42020
记忆化搜索
f[i][j] 表示用i个数凑出j的方案数(即将j分解成i个正整数的和有多少种分解方法)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll f[10][2100];
ll dfs(int i,int j){
if(f[i][j]!=-1){
return f[i][j];
}
if(!i)
{
if(!j) return 1;
return 0;
}
f[i][j]=0;
for(int n=1;n<=j;n++){
f[i][j]+=dfs(i-1,j-n);
}
return f[i][j];
}
int main(){
memset(f,-1,sizeof(f));
cout<<dfs(5,2021)<<endl;
cout<<f[5][2021]<<endl;
return 0;
}
记忆化搜索题解来自这篇