Lane Detecion
文章平均质量分 93
达柳斯·绍达华·宁
这个作者很懒,什么都没留下…
展开
-
(Lane Detection-4)BEV-LaneDet: An Efficient 3D Lane Detection Based on Virtual Camera viaKey-Points
目前3D车道线检测的主流方法有两类:一类是将输入的2D图像通过IPM变换投影到BEV空间,然后使用曲线拟合或者原先的anchor来获取BEV车道。缺点:这种流程在实际驾驶过程中可能会在像上坡和下坡等具有挑战性的情况下引发其他问题。另一类方法使用先验3D锚点,投影到2D图像,提取车道线特征,然后基于这些锚点进行回归。然而,这些方法在某些特定场景下缺乏足够的灵活性\虚拟相机(Virtual Camera):一种新颖的预处理模块,用于统一相机的内外参,确保数据分布的一致性。关键点表示(Key-Points Rep原创 2024-09-10 23:33:53 · 1100 阅读 · 0 评论 -
(Lane Detection-3)PVALane————OpenLane数据集的SOTA模型
然后。原创 2024-09-10 00:36:13 · 942 阅读 · 0 评论 -
(Lane Detection-2)Ultra Fast Structure-aware Deep Lane Detection
一种速度很快的Lane Detection 检测方法。原创 2024-09-09 14:31:40 · 741 阅读 · 0 评论 -
(Lane Detection-5)Decoupling the Curve Modeling and Pavement Regression for Lane Detection
目前车道线检测的三种方案:curve-based:利用贝塞尔曲线(),检测起始点和结束点以及曲线参数,将2D车道线当做曲线回归问题。目前curved-based的方法检测不准确的原因,作者认为并不是因为曲线拟合缺少自由度(也就是曲线方程参数不够),因为过度增加参数可能会过拟合局部车道线而忽略其整体性。但这种方法相较于其他方法的优势在于其整体性。车道线的设计本身也是简单的,连续的。经过研究发现,现实中出现的Lane的不平整主要是来自于道路的问题。原创 2024-08-21 14:41:24 · 993 阅读 · 0 评论 -
(Lane Deteciton-1)PersFormer
在自动驾驶中,下游模块如规划和控制通常需要将车道位置表示为正交的鸟瞰图(BEV)而不是前视图表示。使用BEV表示有助于更好地与环境中的交互式代理(如车辆、道路标志、交通灯等)对齐任务,并且与其他传感器(如LiDAR和雷达)兼容。原创 2024-09-04 16:09:32 · 682 阅读 · 0 评论