lane Detecion :Decoupling the Curve Modeling and Pavement Regression for Lane Detection

目前车道线检测的三种方案:

point-based

segmentation-based

curve-based:利用贝塞尔曲线(贝塞尔曲线(B′ezier)基础_b′ezier 是什么-CSDN博客),检测起始点和结束点以及曲线参数,将2D车道线当做曲线回归问题。

目前curved-based的方法检测不准确的原因,作者认为并不是因为曲线拟合缺少自由度(也就是曲线方程参数不够),因为过度增加参数可能会过拟合局部车道线而忽略其整体性。但这种方法相较于其他方法的优势在于其整体性。车道线的设计本身也是简单的,连续的。

经过研究发现,现实中出现的Lane的不平整主要是来自于道路的问题

具体方法

在2021年的提出的RESA模块,在提取Lane特征时,在垂直和水平方向上循环移动切片特征图,并使每个像素能够收集全局信息,用于丰富图像信息

这种方法显然增加了对于Lane特征的提取效果,但对于边缘位置的Lane,在水平方向上提取的特征是相同的。而且丢失了高度信息。如下图所示,这将会的模型造成困扰,因此本文使用anchor-based方法提取特征。

本文不使用IPM变换,因为IPM变化会把其变成top view,也就是正面视角,在这个过程中,IPM变换假设该视角是平坦的,而实际上道路是高度是变换的,这样的变换反而增加了噪音。

IPM变换:关于IPM逆透视变换的理解_ipm矩阵逆变换-CSDN博客

输入2DLane图片,利用DLA-34作为backone提取特征,然后定义anchor,获取车道线特征,然后利用ROI Align将特征图池化为固定形状,接下来一部分用于生成curve特征,一部分生成height特征。接下来将他们结合生成3D Lane特征,再将其转化为2D Lane特征。

其中curveFormer用于在BEV空间中,拟合x和z的关系(忽略高度关系);具体结构如下所示:

ROI feature(前文提到的固定形状特征)作为Query,global feature map作为key 和value;ROI特征有两种编码形式,一种为Position Embedding 包含位置信息;另一种针对每个anchor的可学习的Region-aware Embedding,通过训练使其包含整个车道线的全局信息,最后flatten输出并加入MLP(全连接层)

Height Former具有相同的结构和Curver Former,然后生成point-based的高度特征,接着将高度特征和Lane特征融合,生成3D Lane特征。

本文使用匈牙利匹配算法去匹配不同位置的predict与gt: 

第一部分为predict和GT的水平距离,第二部分和第三部分分别为开始点和终止点的predict和GT的竖直距离

3D车道线的损失函数如下:

我们使用L1损失(深度学习中常见的损失函数(L1Loss、L2loss)_l1 loss-CSDN博客)将预测的Y值与地面实况进行比较,这被称为高度损失Lh。此外,我们使用端点LZ损失来估计起点和终点的Z值之间的误差

其中:

其中e是控制车道半径的超参数,Xi是均匀采样点的对应X值。

对于2D通道,我们采用透视空间中的通道IoU损失Lper和端点损失Lv来估计2D空间中起点和终点的v值之间的误差:

  • 12
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值