随机梯度下降算法原理

本文详细介绍了梯度下降算法的基本原理和实现步骤。该算法主要用于求解函数的极小值,通过每次迭代逐步逼近目标。在推导过程中提到了学习率的重要性,以及如何通过最小化损失函数来更新参数。值得注意的是,梯度下降并不保证找到全局最小值,而是会收敛到局部最小值。适合于大规模数据集的优化问题。
摘要由CSDN通过智能技术生成

目录

1.算法目标

2.算法描述

3.算法推导

4.注意


1.算法目标

逐渐逼近损失函数 loss 的极小值,简单抽象为求函数f(x)的极小值。

2.算法描述

每次取一个增量\delta \vec{x},使得f(\vec{x} + \delta \vec{x}) - f(\vec{x}) \leq 0,每次向函数值更小的地方前进一小步,多次迭代就能做到逐渐逼近函数f(x)的极小值。

3.算法推导

展开f(\vec{x} + \delta \vec{x}) 得到公式f(\vec{x} + \delta \vec{x}) \approx f(\vec{x}) + \triangledown f(x)\cdot \delta \vec{x} + H \cdot \delta \vec{x}\cdot \delta \vec{x}

其中H为海森矩阵,暂且不考虑。为使f(\vec{x} + \delta \vec{x}) - f(\vec{x}) = \triangledown f(x)\cdot \delta \vec{x} \leq 0成立,只需要保证\triangledown f(x)\cdot \delta \vec{x} \leq 0

即,当\delta \vec{x} = -\eta \cdot \bigtriangledown f(\vec{x})时,\triangledown f(x)\cdot \delta \vec{x} = -\eta \cdot \triangledown f(x)^{2} \leq 0,如此即可保证每次更新在逐渐逼近函数的极小值。其中\eta 为学习率是一个较小的正数。

每次更新时做 x = x -\eta \cdot \bigtriangledown f(\vec{x}) 操作,求得f(x)的最小值。

4.注意

上述过程是在逼近极小值,不一定是函数的最小值。

x = x -\eta \cdot \bigtriangledown f(\vec{x})是一种下降趋势,整个循环步骤中函数值f(x)在下降,并非每个小步骤得到的函数值都比前一次要小。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值