机器学习
文章平均质量分 76
午夜零时
这个作者很懒,什么都没留下…
展开
-
torchaudio的I/O函数
torchaudio如何加载保存音频、查看音频信息遇到保存为flac格式,报错flac does not support encoding怎么解决torchaudio IO函数的backbone原创 2023-03-02 18:50:41 · 1720 阅读 · 0 评论 -
一种简单的统计pytorch模型参数量的方法
获取pytorch模型参数量的简单直接的方法原创 2023-02-11 13:07:32 · 847 阅读 · 1 评论 -
torch中的替换操作
目录1.1通过比较操作得到布尔矩阵1.2布尔矩阵作为索引1.3布尔矩阵的强转1.通过比较替换1.1通过比较操作得到布尔矩阵a = torch.rand((5, 6), dtype=torch.float32)print(a)print(a > 0.5)-----------------------------------------------------------------------------------------tensor([[0.7172, 0.0.原创 2022-05-31 12:16:05 · 2538 阅读 · 0 评论 -
torchaudio频谱特征提取
torchaudio频谱特征提取1.读取和保存音频2.提取特征2.1短时傅里叶变换2.2pytorch复数值的变换和使用2.3Spectrogram的逆变换1.读取和保存音频再torchaudio中,加载和保存音频的API 是 load 和 saveimport torchaudiofrom IPython import displaydata, sample = torchaudio.load(r"E:\pycharm\data\2s数据集\test\audio\c6.flac")print(原创 2022-05-17 14:44:17 · 3855 阅读 · 4 评论 -
pytorch的梯度传递
pytorch的梯度传递1.requires_grad的传递1.1三种情况下的梯度传递1.2利用requires_grad=False冻结骨干网络1.3网络中的数据是记录梯度的1.requires_grad的传递requires_gard 是tensor的一个属性,requires_gard=False表示不记录梯度,requires_gard=True表示记录张量的梯度。每次的计算抽象为张量 A 与 B 做数学运算得到张量 C,C 是否记录梯度取决于 A 和 B的情况。1.1三种情况下的梯度传递原创 2022-05-11 16:35:42 · 1185 阅读 · 0 评论 -
随机梯度下降算法原理
目录1.算法目标2.算法描述3.算法推导4.注意1.算法目标逐渐逼近损失函数 loss 的极小值,简单抽象为求函数的极小值。2.算法描述每次取一个增量,使得,每次向函数值更小的地方前进一小步,多次迭代就能做到逐渐逼近函数的极小值。3.算法推导展开得到公式。其中H为海森矩阵,暂且不考虑。为使成立,只需要保证。即,当时,,如此即可保证每次更新在逐渐逼近函数的极小值。其中为学习率是一个较小的正数。每次更新时做 操作,求得的最小值。4.注意上..原创 2022-05-04 14:56:01 · 1705 阅读 · 0 评论 -
normalization对比
1.batch normalizationper channel across mini-batch对于四维张量[N, C, W, H],取每个批次的均值 torch.mean(dim=(0,2,3), keepdim=True)得到[1, C, 1, 1]形状的张量,即在批次的每个通道上求一个均值做归一化。2.layer normalizationper sample,per layer对于四维张量[N, C, W, H],取每个样本的每层的均值 torch.mean(dim=(1原创 2022-04-18 21:25:08 · 444 阅读 · 0 评论 -
Layer Normalization 中的不变性Invariance 分析
Layer Normalization 中的不变性Invariance 分析1.介绍2.计算2.1计算矩阵1.介绍引用文章引用2016年的Layer Normalization 这篇文章,总结文章中所提及的层归一化、批量归一化、权重归一化的不变性对比。原文链接:layer normalization计算公式The proposed layer normalization is related to batch normalization and weight normalization. Alt原创 2022-04-13 21:21:28 · 246 阅读 · 0 评论 -
X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION总结
目录1.摘要2.前言3.说话人识别系统SPEAKER RECOGNITION SYSTEMS3.1Acoustic i-vector3.2Phonetic bottleneck i-vector3.3x-vector4.数据增广Data augmentation关键字:说话人识别,深度神经网络,数据增强,X-vectors1.摘要使用数据增强来提高深度神经网络(DNN)嵌入的说话人识别的性能。DNN被训练用来区分说话者,它将可变长度的话语映射到固定维的嵌入中,我们称之原创 2021-12-24 19:50:00 · 2557 阅读 · 0 评论 -
An overview of text-independent speaker recognition:From features to supervectors说话人识别综述
这是一篇写于2010年的说话人识别综述,既有传统模型的识别,又包括新兴起的深度神经网络模型,其中的识别流程和前沿问题直到今天依然适用。1摘要这是一个关于自动识别说话人的综述,重点介绍与文本无关的识别技术。详细解释各种技术的原理,以及评价说话人识别系统的标准。2.前言说话人识别是指从人的声音中识别出是哪个人。声纹是有特殊性的,不存在相同的声纹特征,因为两个人的声道形状、喉部大小和其他产生声音的器官都是不相同的。除了这些身体上的差异之外,每个说话者都有他或她特有的...原创 2021-12-23 16:46:27 · 1479 阅读 · 0 评论 -
Attention Is All You Need总结
目录1.摘要2.前言3.背景4.模型架构4.1 编码器和解码器块4.2Attention4.2.1Scaled Dot-Product Attention缩放点积注意力4.2.2Multi-Head Attention多头注意力4.2.3 注意力在模型中的应用4.3基于位置的前馈神经网络Position-wise Feed-Forward Networks4.4embedding嵌入层和Softmax激活函数4.5位置编码Positional Encodin.原创 2021-12-21 09:33:20 · 456 阅读 · 0 评论 -
GAN——Generative Adversarial Nets生成对抗网络总结
1.摘要Abstract对抗网络模型新框架:G:generater生成器——优化目标是最大化D出错的概率 D:discriminater鉴别器——优化目标是准确识别原始数据还是G的生成数据这个框架对应于一个极小极大的两人博弈。在任意函数G和D的空间中,存在唯一的解,其中G恢复训练数据分布,D处处等于1 2。2. 介绍Instruction鉴别器由于反向传播算法有很好的表现,成果很多生成器仍存在诸多限制难以计算最大似然估计和相关策略中出现的许多难以处理的概率估计 难以利用分段线.原创 2021-12-07 13:59:32 · 889 阅读 · 0 评论 -
回归建模的DataFrame和Series问题
python回归建模中要求输入变量为矩阵形式,输出变量为向量。如:modelLR = LM.LinearRegression()modelLR.fit(X,y)其中X为矩阵,y为向量。 LM为导入sklearn.linear_model时取的别名。在建模时我们往往使用pandas读取数据集,pandas提供的dataFrame和Series分别对应矩阵和向量。在利用DataFrame的访问方式时,要注意两种访问方式的区别(DataFrame['key']和DataFrame[['key']原创 2021-09-07 15:34:14 · 445 阅读 · 0 评论 -
机器学习(四)机器学习的常用库之Matplotlib
1.Matplotlib库1.1Matplotlib特点matplotlib是python中最常用的绘图模块 matplotlib的Pyplot子模块与MATLAB非常相似,可以方便的绘制各种常见的统计图形,是用户进行探索式数据分析的重要图形工具 可通过各种函数设置图形中的图标题、线条样式、字符形状、颜色、轴属性以及字体属性等1.2python绘图(一)import numpy as npimport pandas as pdimport matplotlib.pyplot as .原创 2021-08-14 19:34:25 · 528 阅读 · 0 评论 -
机器学习(三)机器学习的常用库之Pandas
python在机器学习领域得到广泛应用的重要原因之一是,python拥有庞大而活跃的第三方程序包,依托这些程序包,用户能够方便的完成绝大多数机器学习任务。1.Pandas库1.1特点:Pandas是基于Numpy构建的,在Numpy的基础上构建了一套特色鲜明的数据组织方式。增加了用户自定义索引;序列对应一维数组,数据框对应二维表格型数据结构,其中各元素的数据类型可以相同也可以不同。 Pandas数据框是存储机器学习数据集的常用形式。Pandas数据框具有复杂而精细的索引,通过索引能够更方便的.原创 2021-08-14 19:32:24 · 928 阅读 · 0 评论 -
机器学习(二)机器学习的常用库之Numpy
python在机器学习领域得到广泛应用的重要原因之一是,python拥有庞大而活跃的第三方程序包,依托这些程序包,用户能够方便的完成绝大多数机器学习任务。1.Numpy库原创 2021-08-14 19:29:13 · 319 阅读 · 0 评论 -
机器学习(一)工具Anaconda安装及使用
1.Anaconda和python的关系Anaconda包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等。Anaconda可以视为python的一个发行版,是针对机器学习和数据科学的一个特殊的python版。硬要类比的话,如果python是初始的安卓系统,那么Anaconda就是内置了安全管家、聊天软件等实用工具后的安卓系统。那么Anaconda在机器学习方面有哪些优势呢。优点:包含conda:conda是一个环境管理器,其功能依靠conda包来实现,该环境原创 2021-08-03 20:03:03 · 2606 阅读 · 0 评论