torchaudio频谱特征提取

1.读取和保存音频

再torchaudio中,加载和保存音频的API 是 load 和 save

import torchaudio
from IPython import display
data, sample = torchaudio.load(r"E:\pycharm\data\2s数据集\test\audio\c6.flac")
print(data.shape, sample)
display.Audio(data.numpy(), rate=sample)
torchaudio.save('./data/audio.wav', src=data, sample_rate=sample)
-------------------------------------------------------------------------
torch.Size([1, 32640]) 16000

需要注意的是,不同于librosa.load()的是,audio.load()不支持指定采样率,没有sr参数。
在保存时,可以通过format参数指定保存格式,encoding参数指定编码方式,bits_per_sample参数值指定编码的采样位数。
format可取值"mp3", “flac”, “vorbis”, “sph”, “amb”, “amr-nb”, “gsm”
encoding可取值:

  • “PCM_S”: Signed integer linear PCM
  • “PCM_U”: Unsigned integer linear PCM
  • “PCM_F”: Floating point linear PCM
  • “FLAC”: Flac, Free Lossless Audio Codec
  • “ULAW”: Mu-law, [wikipedia]
  • “ALAW”: A-law [wikipedia]
  • “MP3” : MP3, MPEG-1 Audio Layer III
  • “VORBIS”: OGG Vorbis [xiph.org]
  • “AMR_NB”: Adaptive Multi-Rate [wikipedia]
  • “AMR_WB”: Adaptive Multi-Rate Wideband [wikipedia]
  • “OPUS”: Opus [opus-codec.org]
  • “GSM”: GSM-FR [wikipedia]
  • “UNKNOWN” None of above

2.提取特征

  • Spectrogram
  • GriffinLim
  • Mel Filter Bank
  • MelSpectrogram
  • MFCC
  • Pitch
  • Kaldi Pitch (beta)

2.1短时傅里叶变换

以 Spectrogram为例,提取短时傅里叶特征

n_fft = 1024
win_length = None
hop_length = 512
# 短时傅里叶变换
transform = torchaudio.transforms.Spectrogram(
    n_fft=n_fft,
    win_length=win_length,
    hop_length=hop_length,
    center=True,
    pad_mode="reflect",
    power=2.0,
)
spec = transform(data)
print(spec.shape, spec.dtype)
------------------------------------------------------------
torch.Size([1, 513, 64]) torch.float32

2.2pytorch复数值的变换和使用

上述参数中值得注意的是指数power,根据官方文档power的值为大于0的float或者为None。比如1.0返回能量,2.0返回功率,None返回复数的频谱。

# 当power为None,返回的数据类型为复数complex64
transform_complex = torchaudio.transforms.Spectrogram(
    n_fft=n_fft,
    win_length=win_length,
    hop_length=hop_length,
    center=True,
    pad_mode="reflect",
    power=None,
)
spec_complex = transform_complex(data)
print(spec_complex.shape, spec_complex.dtype)
----------------------------------------------------------
torch.Size([1, 513, 64]) torch.complex64

由于复数值在网络中不能使用,可以用torch.view_as_real(),转为伪复数,即将复数拆分为实数和复数两部分,放到最后一个维度(最后一维变为2)

spec_real = torch.view_as_real(spec_complex)
print(spec_real.shape, spec_real.dtype)
----------------------------------------------------------------------------------
torch.Size([1, 513, 64, 2]) torch.float32

2.3Spectrogram的逆变换

API:InverseSpectrogram
InverseSpectrogramde只接受数据类型为复数的频谱,或者最后一维为2的伪复数的频谱矩阵。

inverse_Spect = torchaudio.transforms.InverseSpectrogram(n_fft=n_fft,
    win_length=win_length,
    hop_length=hop_length,
    center=True,
    pad_mode="reflect")
# 原始音频
print(data[0, :10])
# 伪复数矩阵的逆变换
data_hat = inverse_Spect(spec_real)
print(data_hat[0, :10])
# 复数矩阵的逆变换
data_hat2 = inverse_Spect(spec_complex)
print(data_hat2[0, :10])
==========================================================================
tensor([ 0.0000e+00,  0.0000e+00,  0.0000e+00,  3.0518e-05,  3.0518e-05,
         3.0518e-05,  0.0000e+00, -6.1035e-05,  0.0000e+00,  0.0000e+00])
tensor([-2.2737e-13,  1.8190e-12,  2.0181e-12,  3.0518e-05,  3.0518e-05,
         3.0518e-05, -2.2714e-13, -6.1035e-05, -3.5279e-12, -2.7309e-12])
tensor([-2.2737e-13,  1.8190e-12,  2.0181e-12,  3.0518e-05,  3.0518e-05,
         3.0518e-05, -2.2714e-13, -6.1035e-05, -3.5279e-12, -2.7309e-12])         

可以看到误差在小数点后10几位。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值