【模板】【高精度】高精加、减、乘,以及高精除低精

高精度算法

        是超大范围数据(10^1000 - 10^2000)的运算的算法,并不是精度更高的算法。一般会以小的考察点出现于算法题中。

        高精度算法的本质是模拟,模拟手算相当于列竖式

        由于高精度算法的数据超大(1e1000 - 1e2000),以long long(大概9e18)为参考,所以会爆long long。所以一般使用串来接收数据,并用数组模拟运算。

 1.高精度加法

 推荐练习题目:洛谷 P1601 A+B Problem(高精)

测试样例:

99999999999999999999999999999999999999999999999999999999999
1

样例输出:

100000000000000000000000000000000000000000000000000000000000
#include<iostream>
#include<string>
using namespace std;
const int N = 2e3 + 5;
int a[N], b[N], c[N];

int main()
{
	string A, B;
	cin >> A >> B;
	int la = A.length(), lb = B.length();
	for (int i = 0; i < la; i++) { //将串A所存数据反存
		a[la - i] = A[i] - '0';
	}
	for (int i = 0; i < lb; i++) { //将串B所存数据反存
		b[lb - i] = B[i] - '0';
	}

	//模拟竖式加法
	int lc = max(la, lb);
	for (int i = 1; i <= lc; i++)
	{
		c[i] += (a[i] + b[i]);
		c[i + 1] += c[i] / 10;
		c[i] %= 10;
	}
	if (c[lc + 1] != 0) lc++; //两数相加数位可能进1入: 1 + 99

	//输出
	for (int i = lc; i >= 1; i--) {//反向输出
		cout << c[i];
	}
	return 0;
}

2. 高精度减法

 推荐练习题目:洛谷 P2142 高精度减法

测试样例:

999999999999999999999999999999999999999999
111111111111111111111111111111111111111111

样例输出

888888888888888888888888888888888888888888
#include<iostream>
using namespace std;
const int N = 20000;
int a[N], b[N], c[N];

int main()
{
	string A, B;
	cin >> A >> B;
	if ((A.length() < B.length()) || (A.length() == B.length() && A < B)) {//比较A B所代表值的大小
		cout << '-';
		swap(A, B);
	}
	int la = A.length(), lb = B.length(), lc = la;
	for (int i = 0; i < la; i++) { //将串A所存数据反存
		a[la - i] = A[i] - '0';
	}
	for (int i = 0; i < lb; i++) { //将串B所存数据反存
		b[lb - i] = B[i] - '0';
	}

	//模拟竖式减法
	for (int i = 1; i <= lc; i++)
	{
		c[i] += (a[i] - b[i]);
		if (c[i] < 0) {
			a[i + 1] -= 1;
			c[i] += 10;
		}
	}
	while (c[lc] == 0 && lc > 1) lc--;//去前导零

	//输出
	for (int i = lc; i >= 1; i--) {
		cout << c[i];
	}
	return 0;
}

        为什么会有判断大小并交换?(代码第10行)因为我们只用了大数减去小数,若交换前B > A会提前输出负号。这部操作省去了很多不必要的麻烦。

        至于判断大小的依据,不考虑前导零时,哪个长哪个肯定大。相同长度时按照字典序即可。

3.高精度乘法

 推荐练习题目:洛谷 P1303 A*B Problem

测试样例:

99999999999999999999999999999999
1000000000000

样例输出

99999999999999999999999999999999000000000000
#include<iostream>
#include<string>
using namespace std;
const int N = 2e4 + 5;
int a[N], b[N], c[N];

int main()
{
	string A, B;
	cin >> A >> B;
	int la = A.length(), lb = B.length(), lc = la + lb;
	for (int i = 0; i < la; i++) { //将串A所存数据反存
		a[la - i] = A[i] - '0';
	}
	for (int i = 0; i < lb; i++) { //将串B所存数据反存
		b[lb - i] = B[i] - '0';
	}

	//模拟竖式乘法
	for (int i = 1; i <= la; i++)
	{
		for (int j = 1; j <= lb; j++)
		{
			c[i + j - 1] += a[i] * b[j];
			c[i + j] += c[i + j - 1] / 10;
			c[i + j - 1] %= 10;
		}
	}

	while (c[lc] == 0 && lc > 1) lc--;//去前导零

	//输出
	for (int i = lc; i >= 1; i--) {
		cout << c[i];
	}
	return 0;
}

 4.高精度除低精度(超大数据除一个不超long long的数据)

 推荐题目 PTA 乙级1017 A除以B (20 分)

测试样例:

9999999999999999999999999999999999999999999
3

样例输出

3333333333333333333333333333333333333333333
#include<iostream>
#include<string>
using namespace std;
const int N = 2e4 + 5;
typedef long long ll;
int a[N];
ll b;

int main()
{
	string A;
	cin >> A;
	cin >> b;
	int la = A.length(), lc = la;
	for (int i = 0; i < la; i++) { //将串A所存数据反存
		a[la - i] = A[i] - '0';
	}

	//模拟竖式
	for (int i = la; i >= 1; i--){
		a[i - 1] += a[i] % b * 10;
		a[i] /= b;
	}

	while (a[lc] == 0 && lc > 1) lc--;//去前导零
	//输出
	for (int i = lc; i >= 1; i--) {
		cout << a[i];
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sophon、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值