数字图像处理(第三版)第2章 数字图像基础

引言

本章主要介绍一些数字图像处理的一些基本概念。属于入门阶段必备的基本知识。
2.1节讨论人类视觉系统的机理等;
2.2节讨论光、电磁波谱的其他分量及它们的成像特点;
2.3节讨论成像传感器及怎样让他们产生数字图像;
2.4节介绍均匀图像取样及灰度量化的概念;
2.5节介绍处理像素间的各种关系;
2.6节介绍主要数学工具。

2.1 视觉感知要素

2.1.1 人眼的结构

下图是一个人眼的简化水平剖面。
在这里插入图片描述
书中主要介绍了人眼中各个组成部分及其相关功能。比如拿晶状体来说,晶状体由同心的纤维细胞层组成,并由附在睫状体上的纤维悬挂着。晶状体吸收大约8%的可见光谱,对短波长的光有较高的吸收率。在晶状体结构中,蛋白质吸收红外光和紫外光,但吸收过量伤眼。

下图显示了右眼中通过眼睛光神经出现区的剖面的杆状体和坠状体密度,感受器密度是根据距中央凹的度数来度量。图中的锥状体在视网膜的中心最密(在中央凹的中心区域),从该中心向外到偏离视轴大约20°,杆状体的密度逐渐增大,然后向外到视网膜的极限边缘处,密度逐渐下降。
在这里插入图片描述

2.1.2 眼睛中图像的形成

下图中的几何关系说明了如何得到一副在视网膜上形成的图像的尺度。
在这里插入图片描述
视网膜图像主要聚焦在中央凹区域。然后,光接收器的相对刺激作用产生感知,把辐射能转变为电脉冲,最后由大脑解码。

2.1.3 亮度适应和辨别

下图显示了特殊适应级别的主观亮度感知范围。
在这里插入图片描述
图中描述的动态范围的基本要点是视觉系统不能同时在一个范围内工作。它是通过改变其整个灵敏度来完成这一变动的,这就是周知的亮度适应现象

2.2 光和电磁波谱

如图所示,我们感受到的可见光的色彩范围只占电磁波的一小部分。
在这里插入图片描述
电磁波谱可用波长、频率或能量来描述。波长(λ)和频率(v)的关系如下公式:
λ=c/v (c为光速)

电磁波谱的各个分量的能量由下公式计算得出:
E=hv (h为普朗克常数)

电磁波可以看成是以波长λ传播的正弦波(见下图),或者看成是没有质量的粒子流,每个粒子以波的模式以光速传播和移动。
一个波长的图形表示

2.3 图像感知和获取

下图显示了用于将照射能量变换为数字图像的三种主要传感器配置。通过将输入电能和对特殊类型检测能源敏感的传感器材料组合,把输入能源转变为电压。输出电压波形是传感器的响应,通过把传感器响应数字化,从每一个传感器得到一个数字量。
单个成像传感器
条带传感器
阵列传感器

2.3.1 简单的图像形成模型

用f(x,y)来表示图像,f的值或幅度是一个正的标量,其物理意义由图像源决定。
0 < f(x,y)< ∞
在这里插入图片描述
f(x,y)由两个分量来表征:
(1)入射到被观察场景的光源照射总量,即入射分量,表示为i(x,y)
(2)场景中物体反射的光照总量,即反射分量,表示为r(x,y)

其中, f(x,y)=i(x,y) * r(x,y)
0<i(x,y)< ∞
0<r(x,y)<1

2.4 图像取样和量化

我们需要把连续的感知数据转换为数字形式。这种转换包括两种处理:取样量化

2.4.1 取样和量化的基本概念

一副图像的x和y坐标及幅度可能都是连续的。为将它转换成数字形式,必须在坐标上和幅度上都进行取样操作。对坐标值进行数字化称为取样,对幅值数字化称为量化
在这里插入图片描述
当传感阵列用于图像获取时,没有运动且阵列中传感器的数量决定了两个方向上的取样限制。下图说明了这个概念。
在这里插入图片描述

2.4.2 数字图像表示

令f(s,t)表示变量s和t的函数,通过取样和量化,我们可把该函数转换为数字图像。有三种方法表示f(x,y)
(1)下图是一副函数图,x,y表示坐标位置,f表示该坐标处的灰度值。
在这里插入图片描述
(2)下图显示了f(x,y)出现在监视器或照片上的情况。每个点的灰度与该点处的f值成正比。
在这里插入图片描述
(3)如果灰度被归一化到区间[0 ,1]内,图像中只有0,0.5或1这样的值,监视器或打印机把这三个值分别变换为黑色、灰色或白色。
在这里插入图片描述
数值阵列用于处理和算法开发。以公式形式,我们可将一个M x N 的数值阵列表示为
在这里插入图片描述
在某些讨论中,使用传统的矩阵表示法来表示数字图像及其像素更为方便:
在这里插入图片描述
存储数字图像所需的比特数b为 b=M x N x k
下图显示了N和k取不同值时需要用来存储方形图像的比特数。
在这里插入图片描述

2.4.3 图像内插

内插是在诸如放大、收缩、旋转和几何校正等任务中广泛应用的基本工具。从根本上看,内插是用已知数据来估计未知位置的数值的处理。
(1)最近邻内插法:把原图像中最近邻的灰度赋给了每个新位置,最简单,但会造成某些直边缘严重失真。
(2)双线性内插:用4个最近邻点去估计给定位置的灰度,令(x,y)为目标位置坐标,令v(x,y)表示灰度值。其中 v(x,y)=ax+by+cxy+d 其中,4个系数可用4个用(x,y)点最近邻点写出的未知方程确定。
(3)双三次内插:它包括16个最近邻点。 其中
在这里插入图片描述
16个系数可由16个用(x,y)点最近邻点写出的未知方程确定。
*

2.5 像素间的一些基本关系

2.5.1 相邻像素

位于坐标(x,y)处的像素p有4个水平和垂直的相邻像素,坐标如下表示:
(x+1,y) , (x-1,y) , (x,y+1) , (x,y-1) 这组像素称为p的4邻域
p的4个对角相邻像素坐标如下:
(x+1,y+1)(x+1,y-1) (x-1,y+1) (x-1,y-1)

2.5.2 邻接性、连通性、区域和边界

三种类型的邻接:
在这里插入图片描述
连通:令S是图像中的一个像素子集。如果S的全部像素之间存在一个通路,则两个像素p和q在S中是连通的。
区域:令R是图像中的一个像素子集。如果R是连通集,则称R为一个区域。
边界:区域R的边界(也称为边缘或轮廓):是这样的点集,这些点与R的补集中的点邻近。换一种方式说,一个区域的边界是该区域中至少有一个背景邻点的像素集合。通常称为内边界。外边界对应于背景边界。

2.5.3 距离度量

对于坐标分别为(x,y),(s,t)和(v,w)的像素p,q和z,如果
(1)D(p,q)>=0 [D(p,q) = 0 , 当且仅当p = q]
(2)D(p,q) = D(q,p)
(3)D(p,z) <= D(p,q) + D(q,z)
则D是距离函数或度量。
p和q间的欧几里得公式如下:在这里插入图片描述
对于距离度量,距点(x,y)的距离小于或等于某个值r的像素是中心在(x,y)且半径为r的圆平面。

p和q间的距离如下定义在这里插入图片描述

2.6 数字图像处理中所用数学工具的介绍

2.6.1 阵列与矩阵操作

包含一幅或多幅图像的阵列操作是以逐像素为基础执行的。考虑下面2x2图像:在这里插入图片描述
这两幅图像的阵列相乘是:在这里插入图片描述
另一方面,矩阵相乘由下式给出:在这里插入图片描述

2.6.2 线性操作与非线性操作

图像处理方法的最重要分类之一是它是线性的还是非线性的。考虑一般的算子
H,该算子对于给定的输入图像f(x,y),产生一幅输出图像g(x, y) :H[ f(x, y)]= g(x,y)
如果在这里插入图片描述则称H是一个线性算子.其中
分别是任意常数和图像(大小相同)。

2.6.3 算数操作

4种算数操作表示为:在这里插入图片描述
它可理解为是在f和g中相应的像素对之间执行操作。

2.6.4 集合和逻辑介绍

这里主要介绍以前学过的集合间的基本运算:交 并 补
逻辑操作:与 或 非

2.6.5 空间操作

(1)单像素操作:以灰度为基础改变单个像素的值。
(2)邻域操作:令 Sxy代表图像 f中以任意一点 (x,y)为中心的一个邻域的坐标集。领域处理在输出图像g中的相同坐标处会生成一个相应的像素,该像素的值由输入图像中坐标在Sxy内的像素经指定操作决定。假设领域运算对应的是计算大小为m×n、中心在(x,y)的矩形领域中的像素的平均值,这个区域中的像素坐标组成集合Sxy,那么其对应的领域运算公式如下:
在这里插入图片描述
其中,r和c是像素的行和列坐标。

2.6.6 向量与矩阵操作

我们看到RGB图像的每一像素都有三个分量,这些分量可组织成一个列向量的形式:
在这里插入图片描述
z1,z2,z3分别代表红色、绿色和蓝色图像中像素的亮度。

2.6.7 图像变换

表示为T(u,v)的二维线性变换是一类重要变换,形式如下:在这里插入图片描述
f(x,y)是输入图像,r(x,y,u,v)称为正弦变换。给定T(u,v)后,用T(u,v)的反变换还原f(x,y):在这里插入图片描述
下图显示了在线性变换域执行图像处理的基本步骤。在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值